Skip to main content
Log in

Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

The Cre/lox system was used to obtain targeted integration of an Agrobacterium T-DNA at a lox site in the genome of Arabidopsis thaliana. Site-specific recombinants, and not random events, were preferentially selected by activation of a silent lox-neomycin phosphotransferase (nptII) target gene. To analyse the effectiveness of Agrobacterium-mediated transfer we used T-DNA vectors harbouring a single lox sequence (this vector had to circularize at the T-DNA left- and right-border sequences prior to site-specific integration) or two lox sequences (this vector allowed circularization at the lox sequences within the T-DNA either prior to or after random integration, followed by targeting of the circularized vector), respectively. Furthermore, to control the reversibility of the integration reaction, Cre recombinase was provided transiently by using a cotransformation approach. One precise stable integrant was found amongst the recombinant calli obtained after transformation with a double-lox T-DNA vector. The results indicate that Agrobacterium-mediated transformation can be used as a tool to obtain site-specific integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albert H, Dale EC, Lee E, Ow DW: Site-specific integration of DNA into wild-type and mutant lox sites placed in the plant genome. Plant J 7: 649–659 (1995).

    PubMed  Google Scholar 

  2. Baubonis W, Sauer B: Genomic targeting with purified Cre recombinase. Nucl Acids Res 21: 2025–2029 (1993).

    PubMed  Google Scholar 

  3. Becker D, Kemper E, Schell J, Masterson R: New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20: 1195–1197 (1992).

    PubMed  Google Scholar 

  4. Bernatzky R, Tanksley SD: Genetics of actin-related sequences in tomato. Theor Appl Genet 72: 314–321 (1986).

    Article  Google Scholar 

  5. Bingham ET: Stomatal chloroplasts in alfalfa at four ploidy levels. Crop Sci 8: 509–510 (1968).

    Google Scholar 

  6. Bilang R, Peterhans A, Bogucki A, Paszkowsk J: Single-stranded DNA as a recombination substrate in plants as assessed by stable and transient recombination assays. Mol Cell Biol 12: 329–336 (1992).

    PubMed  Google Scholar 

  7. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJJ: Trans-Kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14: 3206–3214 (1995).

    PubMed  Google Scholar 

  8. Christie PJ, Ward JE, Winans SC, Nester EW: The Agrobacterium tumefaciens virE2 gene product is a single-stranded-DNA-binding protein that associates with T-DNA. J Bact 170: 2659–2667 (1988).

    PubMed  Google Scholar 

  9. Citovsky V, Wong ML, Zambrysk, P: Cooperative interaction of Agrobacterium virE2 protein with single-stranded DNA: implications for the T-DNA transfer process. Proc Natl Acad Sci USA 86: 1193–1197 (1989).

    PubMed  Google Scholar 

  10. Citovsky V, Guralnick B, Simon MN, Wall JS: The molecular structure of Agrobacterium VirE2-single-stranded DNA complexes involved in nuclear import. J Mol Biol 271: 718–727 (1997).

    PubMed  Google Scholar 

  11. Comai L, Moran P, Maslyar D: Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15: 373–381 (1990).

    PubMed  Google Scholar 

  12. Czako M, Wilson J, Yu X, Marton L: Sustained root culture for generation and vegetative propagation of transgenic Arabidopsis thaliana. Plant Cell Rep 12: 603–606 (1993).

    Article  Google Scholar 

  13. de Groot MJA: Studies on homolgous recombination in Nicotiana tabacum. Ph.D. thesis, Leiden University, Netherlands (1992).

    Google Scholar 

  14. Depicker A, Herman L, Jacobs A, Schell J, Van Montagu M: Frequencies of simultaneous transformation with different T-DNAs and their relevance to the Agrobacterium-plant cell interaction. Mol Gen Genet 201: 477–484 (1985).

    Article  Google Scholar 

  15. Fukushige S, Sauer B: Genomic targeting with a positive-selection lox integration vector allows highly reproducible gene expression in mammalian cells. Proc Natl Acad Sci USA 89: 7905–7909 (1992).

    PubMed  Google Scholar 

  16. Furner IJ, Higgins ES, Berrington AW: Single-stranded DNA transforms plant protoplasts. Mol Gen Genet 220: 65–68 (1989).

    Article  Google Scholar 

  17. Gietl C, Koukolikova-Nicola Z, Hohn B: Mobilization of TDNA from Agrobacterium to plant cells involves a protein that binds single stranded DNA. Proc Natl Acad Sci USA 84: 9006–9010 (1987).

    PubMed  Google Scholar 

  18. Halfter U, Morris P, Willmitzer L: Gene targeting in Arabidopsis thaliana. Mol Gen Genet 231: 186–193 (1992).

    PubMed  Google Scholar 

  19. Hobbs SLA, Kpodar P, De Long CMO: The effect of T-DNA copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol 15: 851–864 (1990).

    PubMed  Google Scholar 

  20. Hoess RH, Abremski K: Mechanism of strand cleavage and exchange in the Cre-lox site-specific recombination system. J Mol Biol 181: 351–362 (1985).

    PubMed  Google Scholar 

  21. Hood EE, Gelvin SB, Melchers LS, Hoekema A: New Agrobacterium helper plasmids for gene transfer to plants. Transgen Res 2: 208–218 (1993).

    Google Scholar 

  22. Hooykaas PJJ, Klapwijk PM, Nuti MP, Schilperoort RA, Rörsch A: Transfer of Agrobacterium tumefaciens Ti plasmid to avirulent agrobacteria and to rhizobium ex planta. J Gen Microbiol 98: 477–484 (1977).

    Google Scholar 

  23. Hooykaas PJJ, Schilperoort RA: Agrobacterium and plant genetic engineering. Plant Mol Biol 19: 15–38 (1992).

    PubMed  Google Scholar 

  24. Hooykaas PJJ, Beijersbergen AGM: The virulence system of Agrobacterium tumefaciens. Annu Rev Phytol 32: 157–179 (1994).

    Google Scholar 

  25. Janssen B-J, Gardner RC: Localized transient expression of GUS in leaf discs following cocultivation with Agrobacterium. Plant Mol Biol 14: 61–72 (1989).

    Article  Google Scholar 

  26. Karreman S, Hauser H, Karreman C: On the use of double FLP recognition targets (FRTs) in the LTR of retroviruses for the construction of high producer cell lines. Nucl Acids Res 24: 1616–1624 (1996).

    PubMed  Google Scholar 

  27. Kilby NJ, Snaith MR, Murray JAH: Site-specific recombinases: tools for genome engineering. Trends Genet 9: 413–421 (1993).

    Article  PubMed  Google Scholar 

  28. Lassner MW, Peterson P, Yoder JI: Simultaneous amplification of multiple DNA fragments by polymerase chain reaction in the analysis of transgenic plants and their progeny. Plant Mol Biol Rep 7: 116–128 (1989).

    Google Scholar 

  29. Lee KY, Lund P, Lowe K, Dunsmuir P: Homologous recombination in plant cells after Agrobacterium-mediated transformation. Plant Cell 2: 415–425 (1990).

    PubMed  Google Scholar 

  30. Maessen GDF: Genomic stability and stability of expression in genetically modified plants. Acta Bot Neerl 46:3–24 (1997).

    Google Scholar 

  31. Marsh JC, Erfle M, Wijkes EJ: The pIC plasmid and vectors with versatile cloning sites for recombinant selection by insertional inactivation. Gene 32: 481–485 (1984).

    Article  PubMed  Google Scholar 

  32. Mattanovich D, Rüker F, Da Câmara Machado A, Laimer M, Regner F, Steinkellner H, Himmler G, Katinger H: Efficient transformation of Agrobacterium spp. by electroporation. Nucl Acids Res 17: 6747 (1989).

    PubMed  Google Scholar 

  33. Miao Z, Lam E: Targeted disruption of the TGA3 locus in Arabidopsis thaliana. Plant J 7: 359–365 (1995).

    Article  PubMed  Google Scholar 

  34. Morton R, Hooykaas PJJ: Gene replacement. Mol Breed 1: 123–132 (1995). 406

    Google Scholar 

  35. Mozo T, Hooykaas PJJ: Factors affecting the rate of T-DNA transfer from Agrobacterium tumefaciens to Nicotiana glauca plant cells. Plant Mol Biol 19: 1019–1030 (1992).

    PubMed  Google Scholar 

  36. Mozo T, Hooykaas PJJ: Design of a novel system for the construction of vectors for Agrobacterium-mediated plant transformation. Mol Gen Genet 236: 1–7 (1992).

    PubMed  Google Scholar 

  37. Neuhaus-Url G, Neuhaus G: The use of the nonradioactive digoxigenin chemiluminescent technology for plant genomic southern blot hybridization: a comparison with radioactivity. Transgen Res 2: 115–120 (1993).

    Google Scholar 

  38. Offringa R, De Groot MJA, Haagsman HJ, Does MP, Van den Elzen PJM, Hooykaas PJJ: Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium mediated transformation. EMBO J 9: 3077–3084 (1990).

    PubMed  Google Scholar 

  39. Offringa R: Gene targeting in plants using the Agrobacterium vector system. Ph.D. thesis, Leiden University, Netherlands (1992).

    Google Scholar 

  40. Onouchi H, Nishihama R, Kudo M, Machida C, Machida Y: Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet 247: 653–660 (1995).

    PubMed  Google Scholar 

  41. Ow DW, Medberry SL: Genome manipulation through site-specific recombination. Crit Rev Plant Sci 14: 239–261 (1995).

    Google Scholar 

  42. Pansegrau W, Schoumacher F, Hohn B, Lanka E: Site-specific cleavage and joining of single-stranded DNA by virD2 protein of Agrobacterium tumefaciens Ti plasmids: analogy to bacterial conjugation. Proc Natl Acad Sci USA 90: 11538–11542 (1993).

    PubMed  Google Scholar 

  43. Paszkowski J, Baur M, Bogucki A, Potrykus I: Gene targeting in plants. EMBO J 7: 4021–4026 (1988).

    Google Scholar 

  44. Peach C, Velten J: Transgene expression variability (position effect) of CAT and GUS reporter genes driven by linked divergent T-DNA promoters. Plant Mol Biol 17: 49–60 (1991).

    PubMed  Google Scholar 

  45. Puchta H: Repair of genomic double-strand breaks in somatic plant cells by one-sided invasion of homologous sequences. Plant J 13: 331–340 (1998).

    Google Scholar 

  46. Puchta H, Dujon B, Hohn B: Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination. Proc Natl Acad Sci USA 93:5055–5060 (1996).

    PubMed  Google Scholar 

  47. Qin M, Lee E, Zankel T, Ow DW: Site-specific cleavage of chromosomes in vitro through Cre-lox recombination. Nucl Acids Res 23: 1923–1927 (1995).

    PubMed  Google Scholar 

  48. Risseeuw E, Offringa R, Franke-van Dijk MEI, Hooykaas PJJ: Targeted recombination in plants using Agrobacterium coincides with additional rearrangements at the target locus. Plant J 7: 109–119 (1995).

    PubMed  Google Scholar 

  49. Sadowski P: Site-specific recombinases: changing partners and doing the twist. J Bact 165: 341–347 (1986).

    PubMed  Google Scholar 

  50. Sambrook L, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  51. Sanger M, Daubert S, Goodman RM: Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol Biol 14: 433–443 (1990).

    PubMed  Google Scholar 

  52. Sauer B: Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7: 2087–2096 (1987).

    PubMed  Google Scholar 

  53. Sauer B: Multiplex Cre/lox recombination permits selective site-specific DNA targeting to both a natural and an engineered site in the yeast genome. Nucl Acids Res 24: 4608–4613 (1996).

    PubMed  Google Scholar 

  54. Sauer B, Henderson N: Targeted insertion of exogenous DNA into the eukaryotic genome by Cre recombinase. New Biol 2: 441–449 (1990).

    PubMed  Google Scholar 

  55. Stark WM, Boocock MR, Sherratt DJ: Catalysis by site-specific recombinases. Trends Genet 8: 432–439 (1992).

    PubMed  Google Scholar 

  56. Stuurman J, De Vroomen MJ, Nijkamp HJJ, Van Haaren MJJ: Single-site manipulation of tomato chromosomes in vitro and in vivo using Cre-lox site-specific recombination. Plant Mol Biol 32: 901–913 (1996).

    PubMed  Google Scholar 

  57. Tinland B, Hohn B, Puchta H: Agrobacterium tumefaciens transfers single-stranded transferred DNA (T-DNA) into the plant cell nucleus. Proc Natl Acad Sci USA 91: 8000–8004 (1994).

    PubMed  Google Scholar 

  58. Valvekens D, Van Montagu M, Van Lijsebettens M: Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc Natl Acad Sci USA 85: 5536–5540 (1988).

    Google Scholar 

  59. Van Haaren MJJ, Ow DW: Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Biol 23: 525–533 (1993).

    PubMed  Google Scholar 

  60. Vergunst AC, De Waal EC, Hooykaas PJJ: Root transformation by Agrobacterium tumefaciens. In Martinez-Zapater J, Salinas (eds): Methods in Molecular Biology, vol 82: Arabidopsis Protocols, pp. 227–244. Humana Press, Totowa (1998).

    Google Scholar 

  61. Vieira J, Messing J: New pUC-derived cloning vectors with different selectable markers and DNA replication origins. Gene 100: 189–194 (1991).

    PubMed  Google Scholar 

  62. Villemont E, Dubois F, Sangwan RS, Vasseur G, Bourgeois Y, Sangwan-Norreel BS: Role of the host cell cycle in the Agrobacterium-mediated genetic transformation of Petunia: evidence of an S-phase control mechanism for T-DNA transfer. Planta 201: 160–172 (1997).

    Google Scholar 

  63. Ward EW, Barnes WM: VirD2 protein of Agrobacterium tumefaciens very tightly linked to the 5′ end of T-strand DNA. Science 242: 927–930 (1988).

    Google Scholar 

  64. Yusibov VM, Steck TR, Gupta V, Gelvin SB: Association of single-stranded transferred DNA from Agrobacterium tumefaciens with tobacco cells. Proc Natl Acad Sci USA 91: 2994–2998 (1994).

    PubMed  Google Scholar 

  65. Zheng Z, Hayashimoto A, Li Z, Murai N: Hygromycin resistance gene cassettes for vector construction and selection of transformed rice protoplasts. Plant Physiol 97: 832–835 (1991).

    Google Scholar 

  66. Zupan J, Zambryski P: The Agrobacterium DNA transfer complex: Critic Rev Plant Sci 16: 279–295 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergunst, A.C., Hooykaas, P.J. Cre/lox-mediated site-specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol 38, 393–406 (1998). https://doi.org/10.1023/A:1006024500008

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006024500008

Navigation