Skip to main content
Log in

Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

ClpP functions as the proteolytic subunit of the ATP-dependent Clp protease in eubacteria, mammals and plant chloroplasts. We have cloned a clpP gene, designated clpP1, from the cyanobacterium Synechococcus sp. PCC 7942. The monocistronic 591 bp gene codes for a protein 80% similar to one of four putative ClpP proteins in another cyanobacterium, Synechocystis sp. PCC 6803. The constitutive ClpP1 content in Synechococcus cultures was not inducible by high temperatures, but it did rise fivefold with increasing growth light from 50 to 175 µmol photons m-2 s-1. A clpP1 inactivation strain (ΔclpP1) exhibited slower growth rates, especially at the higher irradiances, and changes in the proportion of the photosynthetic pigments, chlorophyll a and phycocyanin. Many mutant cells (ca. 35%) were also severely elongated, up to 20 times longer than the wild type. The stress phenotype of ΔclpP1 when grown at high light was confirmed by the induction of known stress proteins, such as the heat shock protein GroEL and the alternate form of PSII reaction center D1 protein, D1 form 2. ClpP1 content also rose significantly during short-term photoinhibition, but its loss in ΔclpP1 did not exacerbate the extent of inactivation of photosynthesis, nor affect the inducible D1 exchange mechanism, indicating ClpP1 is not directly involved in D1 protein turnover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Campbell D, Zhou G, Gustafsson P, Öquist G, Clarke AK: Electron transport regulates exchange of the two forms of photosystem II D1 protein in the cyanobacterium Synechococcus. EMBO J 14: 5457–5466 (1995).

    PubMed  Google Scholar 

  2. Ciechanover A: The ubiquitinproteasome proteolytic pathway. Cell 79: 13–21 (1994).

    Article  PubMed  Google Scholar 

  3. Chung CH: Proteases in Escherichia coli. Science 262: 372–374 (1993).

    PubMed  Google Scholar 

  4. Chung CH, Goldberg AL: The product of the lon (capR) gene in Escherichia coli is the ATP-dependent protease, protease La. Proc Natl Acad Sci USA 78: 4931–4935 (1981).

    PubMed  Google Scholar 

  5. Clarke AK, Critchley C: The identification of a heat shock protein complex in chloroplasts of barley leaves. Plant Physiol 100: 2081–2089 (1992).

    Google Scholar 

  6. Clarke AK, Hurry VM, Gustafsson P, Öquist G: Two functionally distinct forms of the photosystem II reaction center D1 protein in the cyanobacterium Synechococcus sp. PCC 7942. Proc Natl Acad Sci USA 90: 11985–11989 (1993).

    PubMed  Google Scholar 

  7. Clarke AK, Gustafsson P, Lidholm JÅ: Identification and expression of the chloroplast clpP gene from the conifer Pinus contorta. Plant Mol Biol 26: 851–862 (1994).

    PubMed  Google Scholar 

  8. Clarke AK, Campbell D, Gustafsson P, Öquist G: Dynamic responses of the photosystem II reaction centre and phycobilisome to changing light intensity in the cyanobacterium Synechococcus sp. PCC 7942. Planta 197: 553–562 (1995).

    Google Scholar 

  9. Clarke AK, Eriksson MJ: The cyanobacterium Synechococcus sp. PCC 7942 possesses a close homologue to the chloroplast ClpC protein of higher plants. Plant Mol Biol 31: 721–730 (1996).

    PubMed  Google Scholar 

  10. Devereux J, Haeberli P, Smithies O: A comprehensive set of sequence analysis programs for the VAX. Nucl Acids Res 12: 387–395 (1984).

    PubMed  Google Scholar 

  11. Eriksson MJ, Clarke AK: The heat shock protein ClpB mediates the development of thermotolerance in the cyanobacterium Synechococcus. J Bact 178: 4839–4846 (1996).

    PubMed  Google Scholar 

  12. Fujita Y, Murakami A, Aizawa K, Ohki K: Short-term and longterm adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp. 677–692. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  13. Gong H: Light-dependent degradation of the photosystem II D1 protein is retarded by inhibitors of chloroplast transcription and translation: possible involvement of a chloroplastencoded protease. Biochim Biophys Acta 1188: 422–426 (1994).

    Google Scholar 

  14. Gottesman S, Maurizi MR: Regulation by proteolysis: energy-dependent proteases and their targets. Microbiol Rev 56: 592–621 (1992).

    PubMed  Google Scholar 

  15. Gottesman S, Clark WP, de Crecy-Lagard V, Maurizi MR: ClpX, an alternative subunit for the ATPdependent Clp protease of Escherichia coli. J Biol Chem 268: 22618–22626 (1993).

    PubMed  Google Scholar 

  16. Hammond JBW, Preiss J: ATP-dependent proteolytic activity from spinach leaves. Plant Physiol 73: 902–905 (1983).

    Google Scholar 

  17. Hoff KA: Rapid and simple method for double staining of bacteria with 4′,6-diamidino-2-phenylindole and fluorescein isothiocyanatelabeled antibodies. Appl EnvironMicrobiol 54: 2949–2952 (1988).

    Google Scholar 

  18. Huang C, Wang S, Chen L, Lemieux C, Otis C, Turmel M, Liu XQ: The Chlamydomonas chloroplast clpP gene contains translated large insertion sequences and is essential for cell growth. Mol Gen Genet 244: 151–159 (1994).

    PubMed  Google Scholar 

  19. Huisman O, D'Ari R, Gottesman S: Cell division control in Escherichia coli: specific induction of the SOS SfiA protein is sufficient to block septation. Proc Natl Acad Sci USA 81: 4490–4494 (1984)

    PubMed  Google Scholar 

  20. Hwang BJ, Park WJ, Chung CH, Goldberg AL: Escherichia coli contains a soluble ATP-dependent protease (Ti) distinct from protease La. Proc Natl Acad Sci USA 84: 5550–5554 (1987).

    PubMed  Google Scholar 

  21. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M, Tabata S: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. DNA Res 3: 109–136 (1996).

    PubMed  Google Scholar 

  22. Katayama-Fujimura YS, Gottesman S, Maurizi MR: A multiplecomponent, ATP-dependent protease from Escherichia coli. J Biol Chem 262: 4477–4485 (1987)

    PubMed  Google Scholar 

  23. Kessel M, Maurizi MR, Kim B, Kocsis E, Trus BL, Singh SK, Steven AC: Homology in structural organization between E. coli ClpAP protease and the eukaryotic 26 S proteasome. J Mol Biol 250: 587–594 (1995)

    Google Scholar 

  24. Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K: Characterization of cDNA for a dehydrationinducible gene that encodes a ClpA, B-like protein in Arabidopsis thaliana L. Biochem Biophys Res Commun 196: 1214–1220 (1993).

    Article  PubMed  Google Scholar 

  25. Kohchi T, Ogura Y, Umesono K, Yamada Y, Komano T, Ozeki H, Ohyama K: Ordered processing and splicing in a polycistronic transcript in liverwort chloroplasts. Curr Genet 14: 147–154 (1988)

    PubMed  Google Scholar 

  26. Koller B, Fromm H, Galun E, Edelman M: Evidence for in vivo trans splicing of pre-mRNAs in tobacco chloroplasts. Cell 48: 111–119 (1987).

    Article  PubMed  Google Scholar 

  27. Kroh HE, Simon LD: The ClpP component of Clp protease is the σ32-dependent heat shock protein F21.5. J Bact 172: 6026–6034 (1990).

    PubMed  Google Scholar 

  28. Liu XQ, Jagendorf AT: ATP-dependent proteolysis in pea chloroplasts. FEBS Lett 166: 248–252 (1984).

    Article  Google Scholar 

  29. Mattoo AK, Hoffman-Falk H, Marder JB, Edelman M:Regulation of protein metabolism: coupling of photosynthetic electron transport to in vivo degradation of the rapidly metabolized 32-kDa protein of the chloroplast membranes. Proc Natl Acad Sci USA 81: 1380–1384 (1984).

    Google Scholar 

  30. Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S: Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli. J Biol Chem 265: 12536–12545 (1990).

    PubMed  Google Scholar 

  31. Maurizi MR, Clark WP, Kim SH, Gottesman S: ClpP represents a unique family of serine proteases. J Biol Chem 265: 12546–12552 (1990).

    PubMed  Google Scholar 

  32. Moore T, Keegstra K: Characterization of a cDNAclone encoding a chloroplast targeted Clp homologue. Plant Mol Biol 21: 525–537 (1993).

    Article  PubMed  Google Scholar 

  33. Parsell DA, Lindquist S: The function of heatshock proteins in stress tolerance: degradation and reactivation of damaged proteins. Annu Rev Genet 27: 437–496 (1993).

    Article  PubMed  Google Scholar 

  34. Paulton RJ: Analysis of the multiseptate potential of Bacillus subtilis. J Bact 104: 762–767 (1970).

    PubMed  Google Scholar 

  35. Ploem JS: In Lacey AJ (ed) Light Microscopy in Biology: A Practical Approach, pp. 163–185. IRL Press, Oxford, UK (1991).

    Google Scholar 

  36. Riethman H, Bullerjahn G, Reddy KJ, Sherman LA: Regulation of cyanobacterial pigmentprotein composition and organization by environmental factors. Photosynth Res 18: 133–161 (1988).

    Google Scholar 

  37. Riggs P: Expression and purification of maltose-binding protein fusions. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JD, Smith JA, Struhl K (eds) Current Protocols in Molecular Biology. Greene Publishing Associates, New York (1990).

    Google Scholar 

  38. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111: 1–61 (1979).

    Google Scholar 

  39. Salter AH, Virgin I, Hagman Å, Andersson B: On the molecular mechanism of light-induced D1 protein degradation in photosystem II core particles. Biochem 31: 3990–3998 (1992)

    PubMed  Google Scholar 

  40. Schirmer EC, Glover JR, Singer MA, Lindquist S: HSP100/Clp proteins: a common mechanism explains diverse functions. Trends Biochem Sci 21: 289–296 (1996).

    PubMed  Google Scholar 

  41. Schrader S, Altenfeld U, Johanningmeier U: Rapid proteolysis of a truncated D1 protein in vivo. In: Mathis P (ed) Photosynthesis: From Light to Biosphere IV, pp. 263–266. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).

    Google Scholar 

  42. Shanklin J, DeWitt ND, Flanagan JM: The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpC: an archetypal twocomponent ATPdependent protease. Plant Cell 7: 1713–1722 (1995).

    Article  PubMed  Google Scholar 

  43. Shipton CA, Barber J: Characterisation of photoinduced breakdown of the D1-polypeptide in isolated reaction centres of photosystem II. Biochim Biophys Acta 1099: 85–90 (1992).

    PubMed  Google Scholar 

  44. van der Plas J, Hegeman H, de Vrieze G, Tuyl M, Borrias M, Weisbeek P: Genomic integration system based on pBR322 sequences for cyanobacterium Synechococcus sp. PCC 7942: transfer of genes encoding plastocyanin and ferredoxin. Gene 95: 39–48 (1990).

    Article  PubMed  Google Scholar 

  45. Virgin I, Salter AH, Ghanotakis D, Andersson B: Light-induced D1 protein degradation is catalyzed by a serinetype protease. FEBS Lett 281: 125–128 (1991).

    Google Scholar 

  46. Wang J, Hartling JA, Flanagan JM: The structure of ClpP at 2.3 Å resolution suggests a model for ATP-dependent proteolysis. Cell 91: 447–456 (1997).

    PubMed  Google Scholar 

  47. Wickner S, Gottesman S, Skowyra D, Hoskins J, McKenney K, Maurizi MR: A molecular chaperone, ClpA, functions like DnaK and DnaJ. Proc Natl Acad Sci USA 91: 12218–12222 (1994).

    PubMed  Google Scholar 

  48. Wojtkowiak D, Georgopoulos C, Zylicz M: Isolation and characterization of ClpX, a new ATP-dependent specificity component of the Clp protease of Escherichia coli. J Biol Chem 268: 22609–22617 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, A.K., Schelin, J. & Porankiewicz, J. Inactivation of the clpP1 gene for the proteolytic subunit of the ATP-dependent Clp protease in the cyanobacterium Synechococcus limits growth and light acclimation. Plant Mol Biol 37, 791–801 (1998). https://doi.org/10.1023/A:1006016302074

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006016302074

Navigation