Skip to main content
Log in

Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We cloned and characterized a genomic locus encoding a distinct member of the DnaK/Hsp70 family of molecular chaperones, dnaK1, from the halotolerant cyanobacterium Aphanothece halophytica. Co-expression of dnaK1 with a plant plastocyanin precursor in Escherichia coli resulted in a dramatic increase in the solubility of the plant protein. This indicates that A. halophytica dnaK1 encodes a functional protein possessing functions assigned to DnaK/Hsp70 chaperone members. The A. halophytica dnaK1 locus also encompasses grpE and dnaJ homologue genes in the order grpE-dnaK1-dnaJ. The transcript content of dnaK1 increased strongly upon subjecting cyanobacterial cells to heat stress. Northern analyses using specific probes indicated transcript species of 2.8, 2.2, 1.3, and 0.7 kb, which comprised grpE-dnaK1, dnaK1, dnaJ, and grpE, respectively. This indicates the presence of different terminators and/or heat stress promoters in this locus. Both dnaK1 transcript and protein levels increased in cyanobacterial cells transferred to hyperosmotic environments, suggesting a role of DnaK1 in the protection and/or recovery of A. halophytica from this particular stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakaki A, Viale AM: Origins of organelles in plants and algae as inferred from comparisons of highly conserved chaperone proteins. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, vol 1, pp. 971–974. Kluwer Academic Publishers, Dordrecht, Netherlands (1995).

    Google Scholar 

  2. Bardwell JCA, Craig EA: Major heat shock gene of Drosophila and the Escherichia coli heat-inducible dnaK gene are homologous. Proc Natl Acad Sci USA 81: 848–852 (1984).

    Google Scholar 

  3. Bhagwat AA, Apte SK: Comparative analysis of proteins induced by heat shock, salinity, and osmotic stress in the nitrogen-fixing cyanobacterium Anabaena sp. strain L-31. J Bact 171: 5187–5189 (1989).

    Google Scholar 

  4. Borbely G, Suranyi G, Korcz A, Palfi Z: Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bact 161: 1125–1130 (1985).

    Google Scholar 

  5. Caslake LF, Bryant DA: The sigA gene encoding the major sigma factor of RNA polymerase from the marine cyanobacterium Synechococcus sp. strain PCC 7002: cloning and characterization. Microbiology 142: 347–357 (1996).

    Google Scholar 

  6. Chitnis PR, Nelson N: Molecular cloning of the genes encoding two chaperone proteins of the cyanobacterium Synechocystis sp. PCC 6803. J Biol Chem 266: 58–65 (1991).

    Google Scholar 

  7. Conway de Macario E, Clarens M, Macario AJL: Archaeal grpE: transcription in two different morphologic stages of Methanosarcina mazei and comparison with dnaK and dnaJ. J Bact 177: 544–550 (1995).

    Google Scholar 

  8. Csonka LN, Epstein W: Osmoregulation. In: Neidhardt FC (ed) Escherichia coli and Salmonella: Cellular and Molecular Biochemistry, 2nd. ed, pp. 1210–1223. American Society for Microbiology, Washington, DC (1996).

    Google Scholar 

  9. Dayhoff MO, Schwartz RM, Orcutt BC. In: Dayhoff MO (ed) Atlas of Protein Sequence and Structure, vol 5, suppl 3, pp. 345–352. National Biomedical Research Foundation, Silver Spring, MD (1978).

    Google Scholar 

  10. Felsenstein J: Phylogenies from molecular sequences. Inference and realibility. Annu Rev Genet 22: 521–565 (1988).

    Google Scholar 

  11. Furuki M, Tanaka N, Hiyama T, Nakamoto H: Cloning, characterization and functional analysis of the groEL-like gene from thermophilic cyanobacterium Synechococcus vulcanus, which does not form an operon with groES. Biochim Biophys Acta 1294: 106–110 (1996).

    Google Scholar 

  12. Gross CA: Function and regulation of the heat shock proteins. In: Neidhardt FC (ed) Escherichia coli and Salmonella: Cellular and Molecular Biochemistry, 2nd ed, pp. 1382–1398. American Society for Microbiology, Washington, DC (1996).

    Google Scholar 

  13. Gupta RS, Golding GB: Evolution of Hsp70 gene and its implications regarding relationships between archaebacteria, eubacteria, and eukaryotes. J Mol Evol 37: 573–582 (1993).

    Google Scholar 

  14. Hartl F-U: Molecular chaperones in cellular protein folding. Nature 381: 571–580 (1996).

    Google Scholar 

  15. Hecker M, Schumann W, Volker U: Heat-shock and general stress response in Bacillus subtilis. Mol Microbiol 19: 417– 428 (1996).

    Google Scholar 

  16. Hibino T, Lee BH, Takabe T: Role of transit peptide sequence of plastocyanin for its expression, processing, and copper-binding activity in E. coli. J Biochem 116: 826–832 (1994).

    Google Scholar 

  17. Hibino T, Lee BH, Rai AK, Ishikawa H, Kojima H, Tawada M, Shimoyama H, Takabe T: Salt enhances photosystem I content and cyclic electron flow via NAD(P)H dehydrogenase in the halotolerant cyanobacterium Aphanothece halophytica, Aust J Plant Physiol 23: 321–330 (1995).

    Google Scholar 

  18. Ishitani M., Takabe T, Kojima K, Takabe T: Regulation of glycinebetaine accumulation in the halotolerant cyanobacterium Aphanothece halophytica. Aust J Plant Physiol 20: 693–703 (1993).

    Google Scholar 

  19. Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M, Tabata S: Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC 6803. I. Sequence features in the 1 Mb region from map positions of 64% to 92% of the genome. DNA Res 2: 153–166 (1995).

    Google Scholar 

  20. Kovacs E, Torok Z, Horvath I, Vigh L: Heat stress induces association of the GroEL-analog chaperonin with thylakoid membranes in cyanobacterium, Synechocystis PCC 6803. Plant Physiol Biochem 32: 285–293 (1994).

    Google Scholar 

  21. Lehel C, Los D, Wada H, Gyorgyei J, Horvath I, Kovacs E, Murata N Vigh L: A second groEL-Iike gene, organized in a groESL operon is present in the genome of Synechocystis sp. PCC 6803. J Biol Chem 268: 1799–1804 (1993).

    Google Scholar 

  22. Meury J, Kohiyama M: Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli. J Bact 173: 4404–4410 (1991).

    Google Scholar 

  23. Narberhaus F, Giebeler K, Bahl H: Molecular characterization of the dnaK gene region of Chlostridium acetobutylicum, including grpE, dnaJ, and a new heat shock gene. J Bact 174: 3290–3299 (1992).

    Google Scholar 

  24. Nimura K, Yoshikawa H, Takahashi H: Identification of dnaK multigene family in Synechococcus sp. PCC 7942. Biochem Biophys Res Commun 201: 466–471 (1994).

    Google Scholar 

  25. Nimura K, Yoshikawa H, Takahashi H: Sequence analysis of the third dnaK homolog gene in Synechococcus sp. PCC 7942. Biochem Biophys Res Commun 201: 848–854 (1994).

    Google Scholar 

  26. Ohta T, Saito K, Kuroda M, Honda K, Hirata H, Hayashi H: Molecular cloning of two heat shock genes related to the hsp70 genes in Staphylococcus aureus. J Bact 176: 4779–4783 (1994).

    Google Scholar 

  27. Palmer JD: Agenetic rainbow of plastids. Nature 364: 762–763 (1993).

    Google Scholar 

  28. Partridge J, King J, Krska J, Rockabrand D, Blum P: Cloning, heterologous expression, and characterization of the Erysipelothrix rhusiopathiae DnaK protein. Infect Immun 61: 411–417 (1993).

    Google Scholar 

  29. Petronini PG, De Angelis EM, Borghetti AF, Wheeler KP: Effect of betaine on HSP70 expression and cell survival during adaptation to osmotic stress. Biochem J 293: 553–558 (1993).

    Google Scholar 

  30. Saitou N, Nei M: The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406– 425 (1987).

    Google Scholar 

  31. Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY (1989).

    Google Scholar 

  32. Segal G, Ron EZ: The dnaKJ operon of Agrobacterium tumelaciens: transcriptional analysis and evidence for a new heat-shock promoter. J Bact 177: 5952–5958 (1995).

    Google Scholar 

  33. Slater MR, Craig EA: The SSA1 and SSA2 genes of the yeast Saccharomyces cerevisiae. Nucl Acids Res 17: 805–806 (1989).

    Google Scholar 

  34. Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Meth Enzymol 185: 60–89 (1990).

    Google Scholar 

  35. Takabe T, Incharoensakdi A, Arakawa K, Yokota S: CO2 fixation rate and RubisCO content increase in the halotolerant cyanobacterium Aphanothece halophytica grown in high salinities. Plant Physiol 88: 1120–1124 (1988).

    Google Scholar 

  36. Thompson JD, Higgins DG, Gibson TJ: CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22: 4673–4680 (1994).

    Google Scholar 

  37. Tilly K, Hauser R, Campbell J, Ostheimer J: Isolation of dnaJ, dnaK, and grpE homologues from Borrelia burgdorteri and complementation of Escherichia coli mutants. Mol Microbiol 7: 359–369 (1993).

    Google Scholar 

  38. Tsinoremas NF, Ishiura M, Kondo T, Andersson CR, Tanaka K, Takahashi H, Johnoson CH, Golden SS: A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J 15: 2488–2496 (1992).

    Google Scholar 

  39. Viale AM, Arakaki AK, Soncini FC, Ferreyra RG: Evolutionary relationships among eubacterial groups as inferred from GroEL chaperoning sequence comparisons. Int J System Bact 44: 527–533 (1994).

    Google Scholar 

  40. Volker U, Mach H, Schmid R, Hecker M: Stress proteins and cross-protection by heat shock and salt stress in Bacillus subtilis. J Gen Microbiol 138: 2125–2135 (1992).

    Google Scholar 

  41. Webb R, Sherman L: The Cyanobacterial Heat-Shock Response and the Molecular Chaperones. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp. 751–767. Kluwer Academic Publishers, Dordrecht, Netherlands (1994).

    Google Scholar 

  42. Wetzstein M, Volker U, Dedio J, Lobau S, Zuber U, Schiesswohl MS, Herget C, Hecker M, Schumann W: Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J Bact 174: 3300–3310 (1992).

    Google Scholar 

  43. Williams JGK: Construction of specific mutations in photosystem II photosynthetic reaction center by genetic engineering methods in Synechocystis 6803. Meth Enzymol 167: 766–778 (1988).

    Google Scholar 

  44. Zuber M, Hoover TA, Dertzbaugh MT, Court DL: Analysis of the DnaK molecular chaperone system of Francisella tularensis. Gene 164: 149–152 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, B.H., Hibino, T., Jo, J. et al. Isolation and characterization of a dnaK genomic locus in a halotolerant cyanobacterium Aphanothece halophytica. Plant Mol Biol 35, 763–775 (1997). https://doi.org/10.1023/A:1005867420619

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005867420619

Navigation