Skip to main content

Advertisement

Log in

Myocardial perfusion imaging: clinical experience and recent progress in radionuclide scintigraphy and magnetic resonance imaging

  • Published:
The International Journal of Cardiac Imaging Aims and scope Submit manuscript

Abstract

In the past 20 years, radionuclide scintigraphy has proven to be a sensitive clinical tool in the assessment of myocardial perfusion abnormalities. Magnetic resonance imaging may also be used to study myocardial perfusion, but its potential value still has to emerge in the clinical setting. This review addresses the potential and achievements of both methods in clinical cardiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown KA. Prognostic value of thallium-201 myocardial perfusion imaging. A diagnostic tool comes of age. Circulation 1991; 83: 363-381.

    Google Scholar 

  2. Dilsizian V, Bonow RO. Current diagnostic techniques of assessing viability in patients with hibernating and stunned myocardium. Circulation 1993; 87: 1-20.

    Google Scholar 

  3. Weich HF, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977; 56: 188-191.

    Google Scholar 

  4. Grunwald AM, Watson DD, Holzgrefe HH et al. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981; 64: 610-618.

    Google Scholar 

  5. Pohost GM, Zir LM, Moore RH et al. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294-302.

    Google Scholar 

  6. Leppo JA, Meerdink DA. Comparison of the myocardial uptake of technetium-labeled isonitrile analogue and thallium. Circ Res 1989; 65: 632-639.

    Google Scholar 

  7. Detrano R, Janosi A, Lyons KP et al. Factors affecting sensitivity and specificity of a diagnostic test: The exercise thallium scintigram. Am J Med 1988; 84(4): 699-710.

    Google Scholar 

  8. Fintel DJ, Links JM, Brinker JA et al. Improved diagnostic performance of exercise thallium-201 single photon emission computed tomography over planar imaging in the diagnosis of coronary artery disease: A receiver-operating characteristic analysis. J Am Coll Cardiol 1989; 13(3): 600-612.

    Google Scholar 

  9. Mahmarian JJ, Verani MS. Exercise thallium-201 perfusion scintigraphy in the assessment of coronary artery disease. Am J Cardiol 1991; 67: 2D-11D.

    Google Scholar 

  10. Van Train K, Maddahi J, Berman DS et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: A multicenter trial. J Nucl Med 1990; 31: 1168-1179.

    Google Scholar 

  11. Iskandrian AS, Heo J, Kong B et al. Effect of exercise level on the ability of thallium-201-tomographic imaging in detecting coronary artery disease: Analysis of 461 patients. J Am Coll Cardiol 1989; 14: 1477-1486.

    Google Scholar 

  12. Maddahi J, Van Train K, Prigent F et al. Quantitative single photon emission computed thallium-201 tomography for detection and localization of coronary artery disease: optimization and prospective validation of a new technique. J Am Coll Cardiol 1989; 14: 1689-1699.

    Google Scholar 

  13. Van Train KF, Maddahi J, Berman DS et al. Quantitative analysis of tomographic stress thallium-201 myocardial scintigrams: a multicenter trial. J Nucl Med 1990; 31: 1186-1179.

    Google Scholar 

  14. Okada R, Glover D, Gaffney T et al. Myocardial kinetics of technetium-99m hexakis-2-methoxy-2-methylpropylisonitrile. Circulation 1988; 77: 491-498.

    Google Scholar 

  15. Melon PG, Beanlands RS, DeGrado TR, Nguyen N, Petry NA, Schwaiger M. Comparison of technetium-99m sestamibi and thallium-201 retention characteristics in canine myocardium. J Am Coll Cardiol 1992; 20: 1277-1283.

    Google Scholar 

  16. Taillefer R, Primeau M, Costi P et al. Technetium-99m myocardial perfusion imaging in detection of coronary artery disease: comparison between initial (1-hr) and delayed (3-hr) postexercise images. J Nucl Med 1991; 32: 2311-2317.

    Google Scholar 

  17. Berman DS, Kiat H, Van Train KF et al. Technetium 99m sestamibi in the assessment of chronic coronary artery disease. Semin Nucl Med 1991; 21: 190-212.

    Google Scholar 

  18. Faber TL, Akers MS, Peshock RM et al. Three-dimensional motion and perfusion quantification in gated single-photon emission computed tomograms. J Nucl Med 1991; 32: 2311-2317.

    Google Scholar 

  19. Gallik DM, Obermueller SD, Swarna US et al. Simultaneous assessment of myocardial perfusion and left ventricular function during transient coronary occlusion. J Am Coll Cardiol 1995; 25: 1529-1538.

    Google Scholar 

  20. DePuey EG, Rozanski A. Gated Tc-99m sestamibi SPECT to characterize fixed defects as infarct or artifact [Abstract]. J Nucl Med 1992; 33: 927.

    Google Scholar 

  21. Berman DS, Kiat HS, Van Train KF et al. Myocardial perfusion imaging with technetium-99m-sestamibi: comparative analysis of available imaging protocols. J Nucl Med 1994; 35: 681-688.

    Google Scholar 

  22. Hurwitz GA, Clark EM, Slomka PG et al. Investigation of measures to reduce interfering abdominal activity on rest myocardial images with Tc-99m sestamibi. Clinic Nucl Med 1993; 9: 735-741.

    Google Scholar 

  23. Taillefer R, Lambert R, Dupras G et al. Clinical comparison between thallium-201 and Tc-99m-methoxy isobutyl isonitrile (hexamibi) myocardial perfusion imaging for detection of coronary artery disease. Eur J Nucl Med 1989; 15: 280-286.

    Google Scholar 

  24. Iskandrian AS, Heo J, Kong B et al. Use of technetium-99m isonitrile (RP-30A) in assessing left ventricular perfusion and function at rest and during exercise in coronary artery disease, and comparison with coronary angiography and exercise thallium-201 SPECT imaging. Am J Cardiol 1989; 64: 270-275.

    Google Scholar 

  25. Maddahi J, Van Train KF, Prigent F et al. Myocardial perfusion imaging with technetium-99m sestamibi SPECT in the evaluation of coronary artery disease. Am J Cardiol 1990; 66: 55E-62E.

    Google Scholar 

  26. Kahn, JK, McGhie I, Akers MS et al. Quantitative rotational tomography with 201Tl and 99mTc 2-methoxy-isobutylisonitrile. A direct comparison in normal individuals and patients with coronary artery disease. Circulation 1989; 79: 1282-1293.

    Google Scholar 

  27. Kiat H, Maddahi J, Roy LT et al. Comparison of technetium-99m methoxyisobutyl isonitrille and thallium-201 for evaluation of coronary artery disease by planar and tomographic methods. Am Heart J 1989; 117: 1-11.

    Google Scholar 

  28. Leppo JA, Meerdink DJ. Comparative myocardial extraction of two technetium-labeled BATO derivatives (SQ30217, SQ32014) and thallium. J Nucl Med 1990; 31: 67-74.

    Google Scholar 

  29. Gray WA, Gewirtz H. Comparison of 99mTc-teboroxime with thallium for myocardial imaging in the presence of a coronary artery stenosis. Circulation 1991; 84: 1796-1807.

    Google Scholar 

  30. Phillips DJ, Henneman RA, Merhige ME. Rapid diagnosis of coronary disease using dipyridamole and teboroxime washout imaging [Abstract]. J Am Coll Cardiol 1994; 23: 255A.

    Google Scholar 

  31. Sinusas AJ, Shi QX, Saltzberg MT et al. Technetium-99m tetrofosmin to assess myocardial blood flow: experimental validation in an intact canine model of ischemia. J Nucl Med 1994; 35: 664-667.

    Google Scholar 

  32. Higley B, Smith FW, Smith T et al. Technetium-99m-1,2bis(2-ethoxyethyl) phosphineethane: Human biodistribution, dosimetry and safety of a new myocardial perfusion imaging agent. J Nucl Med 1993; 34: 30-38.

    Google Scholar 

  33. Jain D, Wackers FJ, Mattera J et al. Biokinetics of 99m Tctetrofosmin, myocardial perfusion imaging agent: implications for a one day imaging protocol. J Nucl Med 1993; 34: 1254-1259.

    Google Scholar 

  34. Tamaki N, Takahashi N, Kawamoto M et al. Myocardial tomography uusing technetium-99m-tetrofosmin to evaluate coronary artery disease. J Nucl Med 1994; 35: 594-600.

    Google Scholar 

  35. Zaret BL, Rigo P, Wackers FJ et al. Myocardial perfusion imaging with 99mTc terofosmin. Comparison to 201Tl imaging and coronary angiography in a phase III multicenter trial. Circulation 1995; 91: 313-319.

    Google Scholar 

  36. White CW, Wright CB, Doty DB et al. Does visual interpretation of the coronary arteriogram predict the physiological importance of a stenosis. N Engl J Med 1984; 310: 819-824.

    Google Scholar 

  37. Kalff V, Kelly MJ, Soward A et al. Assessment of hemodynamic significance of isolated stenoses of the left anterior descending coronary artery using thallium-201 myocardial scintigraphy. Am J Cardiol 1985; 55: 342-346.

    Google Scholar 

  38. Brown KA, Osbakken M, Boucher CA et al. Positive exercise thallium-201 test responses in patients with less than 50% maximal coronary stenosis: angiographic and clinical predictors. Am J Cardiol 1985; 55: 54-57.

    Google Scholar 

  39. Gibbons RJ, Verani MS, Behrenbeck T et al. Feasibility of tomographic 99mTchexakis2methoxy 2methylpropylisonitrile imaging for the assessment of myocardial area at risk and the effect of treatment in acute myocardial infarction. Circulation 1989; 80: 1277-1286.

    Google Scholar 

  40. Santoro GM, Bisi G, Sciagra R et al. Single photon emission computed tomography with technetium-99m hexakis 2-methoxyisobutyl isonitrile in acute myocardial infarction before and after thrombolytic treatment: assessment of salvaged myocardium and prediction of late recovery. J Am Coll Cardiol 1990; 15: 301-314.

    Google Scholar 

  41. Wackers FJ, Gibbons RJ, Verani MS et al. Serial quantitative planar technetium-99m isonitrile imaging in acute myocardial infarction: efficacy for noninvasive assessment of thrombolytic therapy. J Am Coll Cardiol 1989; 14: 861-873.

    Google Scholar 

  42. Gibbons RJ, Holmes DR, Reeder GS et al. Immediate angioplasty compared with the administration of a thrombolytic agent followed by conservative treatment for myocardial infarction. N Engl J Med 1993; 328: 685-691.

    Google Scholar 

  43. Pfisterer M, Emmenegger H, Schmitt HE et al. Accuracy of serial myocardial perfusion scintigraphy with thallium-201 for prediction of graft patency early and late after coronary artery bypass surgery. Circulation 1982; 66: 1017-1024.

    Google Scholar 

  44. Breisblatt WM, Barnes JV, Weiland F et al. Incomplete revascularization in multivessel percutaneous transluminal angioplasty: The role for stress thallium-201 imaging. J Am Coll Cardiol 1988; 11: 1183-1190.

    Google Scholar 

  45. Hecht HS, Shaw RE, Chin HL et al. Silent ischaemia after coronary angioplasty: evaluation of restenosis and extent of ischaemia in asymptomatic patients by tomographic thallium-201 exercise imaging and comparison with symptomatic patients. J Am Coll Cardiol 1991; 17: 670-677.

    Google Scholar 

  46. Wijns W, Serruys PW, Reiber JHC et al. Early detection of restenosis after successful percutaneous transluminal angioplasty by exercise-redistribution thallium scintigraphy. Am J Cardiol 1985; 55: 357-361.

    Google Scholar 

  47. Breisblatt WM, Weiland FL, Spaccavento LJ. Stress thallium-201 imaging after coronary angioplasty predicts restenosis and recurrent symptoms. J Am Coll Cardiol 1988; 12: 1199-1204.

    Google Scholar 

  48. Knabb RM, Gidday JM, Ely SW et al. Effects of dipyridamole on myocardial adenosine and active hyperemia. Am J Physiol 1984; 247: H804-H810.

    Google Scholar 

  49. Homma S, Callahan RJ, Ameer B et al. Usefulness of oral dipyridamole suspension for stress thallium imaging without exercise in the detection of coronary artery disease. Am J Cardiol 1986; 57: 503-508.

    Google Scholar 

  50. Ranhosky A, Kempthorne-Rawson J. The safety of intravenous dipyridamole thallium myocardial perfusion imaging. Circulation 1990; 81: 1205-1209.

    Google Scholar 

  51. Lette J, on behalf of the Multicenter Dipyridamole Safety Study. Safety of dipyridamole testing: Preliminary results in 43,000 patients. J Am Coll Cardiol 1993; 21(Suppl A): 207 [Abstract].

    Google Scholar 

  52. Moser GH, Schrader J, Deursen A. Turnover of adenosine in plasma of human and dog blood. Am J Physiol 1989; 256 (Cell Physiol 25): C799-C806.

    Google Scholar 

  53. Verani MS, Mahmarian JJ, Hixson JB et al. Diagnosis of coronary artery disease by controlled coronary vasodilation with adenosine and thallium-201 scintigraphy in patients unable to exercise. Circulation 1990; 82: 80-87.

    Google Scholar 

  54. Hays JT, Mahmarian JJ, Cochran A et al. Dobutamine thallium-201 tomography for evaluating patients with suspected coronary artery disease unable to undergo exercise or vasodilator pharmacologic stress testing. J Am Coll Cardiol 1993; 21: 1583-1590.

    Google Scholar 

  55. Beller GA. Pharmacologic stress imaging. JAMA 1991; 265; 633-638.

    Google Scholar 

  56. Varma SK, Watson DD, Beller GA. Quantitative comparison of thallium-201 scintigraphy after exercise and dipyridamole in coronary artery disease. Am J Cardiol 1989; 64: 871-877.

    Google Scholar 

  57. Verani MS, Mahmarian JJ. Myocardial perfusion scintigraphy during maximal coronary artery vasodilation with adenosine. Am J Cardiol 1991; 67: 12D-17D.

    Google Scholar 

  58. DePuey EG, Guertler-Krawczynska E, Robbins WL. Thallium-201 SPECT in coronary artery disease patients with left bundle branch block. J Nucl Med 1988; 22: 1479-1485.

    Google Scholar 

  59. Hirzel HO, Senn M, Nuesch K et al. Thallium-201 scintigraphy in patients having complete left bundle branch block with normal coronary arteries. Am J Cardiol 1984; 53: 764-769.

    Google Scholar 

  60. Jukema JW, van der Wall EE, van der Vis-Melsen MJE et al. Dipyridamole thallium-201 scintigraphy for improved detection of left anterior descending coronary artery stenosis in patients with left bundle branch block. Eur Heart J 1993; 14: 53-56.

    Google Scholar 

  61. O'Keefe JH, Bateman TM, Barnhart C. Adenosine thallium-201 is superior to exercise thallium-201 for detecting coronary artery disease in patients with left bundle branch block. J Am Coll Cardiol 1993; 21: 1332-1338.

    Google Scholar 

  62. Hoffman JIE. Transmural myocardial perfusion. Prog Cardiovasc Dis 1987; 29: 429-464.

    Google Scholar 

  63. Kraitchmann DL, Wilke N, Hexeberg E et al. Myocardial perfusion and function in dogs with moderate coronary stenosis. Magn Reson Med 1996; 35: 771-780.

    Google Scholar 

  64. Higgins FB, Saeed M, Wendland M et al. Evaluation of myocardial function and perfusion in ischemic heart disease. Magn reson Mater Phys Biol Med 1994; (2/3): 177-178.

  65. Van Rugge FP, Van der Wall EE, Spanjersberg S et al. Magnetic resonance imaging during dobutamine stress for detection and localization of coronary artery disease. Quantitative wall motion analysis using a modification of the centerline method. Circulation 1994; 90: 127-138.

    Google Scholar 

  66. Hofman MBM, Van Rossum AC, Sprenger M et al. Assessment of flow in the right human coronary artery by magnetic resonance phase contrast velocity measurements: impact of cardiac and respiratory motion. Magn Reson Med 1996; 35: 521-531.

    Google Scholar 

  67. Hundley WG, Lange RA, Clarke GD et al. Assessment of coronary flow and flow reserve in humans with magnetic resonance imaging. Circulation 1996; 93: 1502-1508.

    Google Scholar 

  68. Sakuma H, Blake LM, Amidon TM et al. Coronary flow reserve: noninvasive measurement in humans with breathhold velocity-encoded cine MR imaging. Radiology 1996; 198: 745-750.

    Google Scholar 

  69. Yabe T et al, Mitsunami K, Inubushi T et al. Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by (31)P magnetic resonance spectroscopy.

  70. Weiss RG, Bottomley PA, Hardy CJ et al. Regional myocardial metabolism of high energy phosphates during isometric exercise in patients with coronary artery disease. N Engl J Med 1990; 323: 1593-1600.

    Google Scholar 

  71. Pohost GM. Is 31P-NMR spectroscopic imaging a viable approach to assess myocardial viability? Circulation 1995; 92(1): 9-10.

    Google Scholar 

  72. Williams ES, Kaplan JI, Thatcher F et al. Prolongation of proton spin lattice times in regionally ischemic tissue from dog hearts. J Nucl Med 1980; 21: 449-453.

    Google Scholar 

  73. Higgins CB, Herkens R, Lipton MJ et al. Nuclear magnetic reonance imaging of acute myocardial infarction in dogs: alterations in magnetic relaxation times. Am J Cardiol 1983; 52: 184-188.

    Google Scholar 

  74. Aisen AM, Buda AJ, Zotz RJ et al. Visualization of myocardial infarction and subsequent coronary reperfusion with MR using a dog model. Magn Reson Imaging 1987; 5: 399-404.

    Google Scholar 

  75. Pflugfelder PW, Wisenberg G, Prato FS et al. Serial imaging of canine myocardial infarction by in vivo nuclear magnetic resonance. J Am Coll Cardiol 1986; 7: 843-849.

    Google Scholar 

  76. Weinmann HJ, Brasch RC, Press WR et al. Characteristics of Gadolinium-DTPA Complex: a potential NMR contrast agent. AJR 1984; 142: 619-624.

    Google Scholar 

  77. Schmiedl U, Moseley ME, Ogan MD et al. Comparison of initial biodistribution patterns of Gd-DTPA and Albumin-(Gd-DTPA) using rapid spin-echo MR imaging. J Comput Assist Tomogr 1987; 11(2): 306-313.

    Google Scholar 

  78. Eichstaedt HW, Felix R, Dougherty FC et al. Magnetic resonance imaging in different stages of myocardial infarction using the contrast agent Gadolinium-DTPA. Clin Cardiol 1986; 9: 527-535.

    Google Scholar 

  79. Nishimura T, Kobayashi H, Ohara Y et al. Serial assessment of myocardial infarction by using gated MR-imaging and Gd-DTPA. Am J Roentgenol 1988; 150: 531-4.

    Google Scholar 

  80. Van Rossum AC, Van Eenige MJ, Sprenger M et al. Value of gadolinium-diethylene-triamine pentaacetic acid dynamics in magnetic resonance imaging of acute myocardial infarction with occluded and reperfused coronary arteries after thrombolysis. Am J Cardiol 1990; 65(13): 845-851.

    Google Scholar 

  81. Van Rugge FP, Van der Wall EE, Van Dijkman PRM et al. Usefulness of ultrafast magnetic resonance imaging in healed myocardial infarction. Am J Cardiol 1992; 70: 1233-1237.

    Google Scholar 

  82. Van Dijkman PRM, Van der Wall EE, De Roos A et al. Acute, subacute, and chronic myocardial infarction: quantitative analysis of Gadolinium-enhanced MR images. Radiology 1991; 180: 147-151.

    Google Scholar 

  83. Dulce MC, Duerinckx AJ, Hartiala J et al. MR imaging of the myocardium using nonionic contrast medium: signal intensity changes in patients with subacute myocardial infarction. AJR 1993; 160: 963-970.

    Google Scholar 

  84. Holman ER, van Jonbergen HPW, van Dijkman PRM et al. Comparison of magnetic resonance imaging studies with enzymatic indexes of myocardial necrosis for quantification of myocardial infarct size. Am J Cardiol 1993; 71: 1036-1040.

    Google Scholar 

  85. De Roos A, Mattheijsen NAA, Doornbos J et al. Myocardial infarct size after reperfusion therapy: assessment with Gd-DTPA-enhanced MR imaging. Radiology 1990; 176: 517-521.

    Google Scholar 

  86. Schaefer S, Malloy CR, Katz J et al. Gadolinium-DTPAenhanced nuclear magnetic resonance imaging of reperfused myocardium: identification of the myocardial bed at risk. J Am Coll Cardiol 1988; 12: 1064-1072.

    Google Scholar 

  87. De Roos A, Van Rossum AC, Van der Wall EE et al. Reperfused and nonreperfused myocardial infarction: diagnostic potential of Gd-DTPA-enhanced MR imaging. Radiology 1989; 172: 717-720.

    Google Scholar 

  88. Saeed M, Wendland WF, Masui T et al. Reperfused myocardial infarctions on T1 and susceptibility-enhanced MRI: evidence for loss of compartmentalization of contrast media. Magn Reson Med 1994; 31: 31-39.

    Google Scholar 

  89. Saeed M, Wendland MF, Yu KK et al. Identification of myocardial reperfusion with echo planar magnetic resonance imaging. Discrimination between occlusive and reperfused infarctions. Circulation 1994; 90: 1492-1501.

    Google Scholar 

  90. Lima JAC, Judd RM, Bazille A et al. Regional heterogeneity of human myocardial infarcts demonstrated by contrastenhanced MRI. Potential mechanisms. Circulation 1995; 92: 1117-1125.

    Google Scholar 

  91. Meier P, Zierler KL. On the theory of the indicator-dilution method for measurement of blood flow and volume. J Appl Physiol 1954; 6(12): 731-744.

    Google Scholar 

  92. Bloomfield DA. Dye curves: The theory and practice of indicator-dilution. University Park Press, Baltimore 1974.

    Google Scholar 

  93. Klingensmith WC. Regional blood flow with first circulation time-indicator curves: A simplified, physiologic method of interpretation. Radiology 1983; 149: 281-286

    Google Scholar 

  94. Frahm J, Merboldt KD, Bruhn H et al. 0.3-Second FLASH MRI of the human heart. Magn Res Med 1990; 13(1): 150-157.

    Google Scholar 

  95. Cohen MS, Weiskoff RM, Ultra-fast imaging. Magn Reson Med 1991; 9: 1-37.

    Google Scholar 

  96. Nichols KRK, Warner HR, Wood EH. A study of dispersion of an indicator in the circulation. Ann NY Acad Sci 1964; 115: 721-737.

    Google Scholar 

  97. Keijer JT, Van Rossum AC, Van Eenige MJ et al. Semiquantitation of regional myocardial blood flow in normal human subjects using first pass magnetic resonance imaging. Am Heart J 1995; 130: 893-901.

    Google Scholar 

  98. Thompson HK, Starmer CF, Whalen RE et al. Indicator transit time considered as a gamma variate. Circ Res 1964; 14: 502-515.

    Google Scholar 

  99. Wilke N, Simm C, Zhang J et al. Contrast-enhanced first-pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Res Med 1993; 29: 485-497.

    Google Scholar 

  100. Rumberger JA, Feiring AJ, Lipton MJ et al. Use of ultrafast computed tomography to quantitate regional myocardial perfusion: a preliminary report. J Am Coll Cardiol 1987; 9: 59-69.

    Google Scholar 

  101. Weiss RM, Otoadese EA, Noel MP et al. Quantitation of absolute regional myocardial perfusion using cine computed tomography. J Am Coll Cardiol 1994; 23: 1186-93.

    Google Scholar 

  102. Kaul S, Kelly P, Oliner JD et al. Assessment of regional myocardial blood flow with myocardial contrast twodimensional echocardiography. J Am Coll Cardiol 1989; 13: 468-82.

    Google Scholar 

  103. Skyba DM, Jayaweera AR, Goodman NC et al. Quantification ofmyocardial perfusion with myocardial contrast echocardiography during left atrial injection of contrast. Implications for venous injection. Circulation 1994; 90: 1513-1521.

    Google Scholar 

  104. Eigler NL, Schuelen H, Whiting JS et al. Digital angiographic impulse response analysis of regional myocardial perfusion. Estimation of coronary flow, flow reserve, and distribution volume by compartment transit time measurement in a canine model. Circulation Research 1991; 68: 870-880.

    Google Scholar 

  105. Porter TA, D'SA A, Turner C et al. Myocardial contrast echocardiography for the assessment of coronary blood flow reserve: Validation in humans. J Am Coll Cardiol 1993; 21: 349-355.

    Google Scholar 

  106. Pijls NHJ, Uijen GJH, Hoevelaken A et al. Mean transit time for the assessment of myocardial perfusion by videodensitometry. Circulation 1990; 81: 1331-1340.

    Google Scholar 

  107. Weiskoff RM, Chesler D, Boxerman JL et al. Pitfalls in MR measurement of tissue blood flow with intravascular tracers: Which mean transit time? Magn Res Med 1993; 29: 553-559.

    Google Scholar 

  108. Rosen BR, Belliveau JW, Chien D. Perfusion imaging by nuclear magnetic resonance. Magn Reson Quart 1989; 5(4): 263-281.

    Google Scholar 

  109. Burstein D, Taratuta E, Manning WJ. Factors in myocardial perfusion imaging with ultrafast MRI and Gd-DTPA administration. Magn Reson Med 1991; 20: 299-305.

    Google Scholar 

  110. Diesbourg LD, Prato FS, Wisenberg G et al. Quantification of myocardial blood flow and extracellular volumes using a bolus injection of Gd-DTPA: kinetic modeling in canine ischemic disease. Magn Reson Med 1992; 23: 239-253.

    Google Scholar 

  111. Higgins CB, Saeed M, Wendland M. Contrast enhancement for the myocardium. Magn Reson Med 1991; 22: 347-353.

    Google Scholar 

  112. Muehler A. Assessment of myocardial perfusion using contrast enhanced MRI: current status and future developments. Magn Reson Mater Phys Biol Med 1995; 3(1): 21-33.

    Google Scholar 

  113. Dendrimer-based metal chelates: A new class of magnetic resonance imaging contrast agents. Magn Reson Imag 1994; 31: 1-8.

    Google Scholar 

  114. Hecke PV, Marchal G, Bosmans H et al. NMR imaging study of the pharmacodynamics of polylysine-gadolinium-DTPA in the rabbit and the rat. Magn Reson Imag 1991; 9: 313-321.

    Google Scholar 

  115. Wilke N, Jerosch-Herold M, Stillman AE et al. Concepts of perfusion imaging in magnetic resonance imaging. Magn Reson Quart 1994; 10: 249-286.

    Google Scholar 

  116. Manning WJ, Atkinson DJ, Parker AJ et al. Assessment of intracardiac shunts with Gadolinium-enhanced ultrafast MR imaging. Radiology 1992; 184: 357-361.

    Google Scholar 

  117. Chinard FP, Enns TE, Nolan MF. Indicator-dilution studies with diffusible indicators. Circ Res 1962; 10: 473-490.

    Google Scholar 

  118. Canty JM, Judd RM, Brody AS et al. First-pass entry of nonionic contrast agent into the myocardial extravascular space. Effects on radiographic estimates of transit time and blood volume. Circulation 1991; 84: 2071-2078.

    Google Scholar 

  119. Tong CY, Prato F, Wisenberg G et al. Measurement of the extraction efficiency and distribution volume for Gd-DTPA in normal and diseased canine myocardium. MRM 1993; 30: 337-346.

    Google Scholar 

  120. Wilke N, Jerosch-Herold M, Muehler A et al. 24-Gd-DTPA-cascade polymer: A novel intravascular relaxation contrast agent for cardiac MR first-pass imaging. In: Book of Abstracts: 2nd annual meeting. San Francisco: Society of Magnetic Resonance, 1994: 112.

    Google Scholar 

  121. Schuhmann-Giampieri G, Schmit-Willich, Frenzel T et al. In vivo and in vitro evaluation of Gd-DTPA-polylysine as a macromolecular contrast agent for magnetic resonance imaging. Invest Radiol 1991; 26: 969-974.

    Google Scholar 

  122. Dolan RP, Pottumarthi VP, Wielopolski PA et al. First-pass myocardial imaging with MS-325, an intravascular MRI contrast agent. Proceedings 4th annual meeting ISMRM, New York, 1996. p 686 (abstract).

  123. Wilke N, Kroll K, Merkle H et al. Regional myocardial blood volume and flow via MR first pass imaging in concert with polylysine-gadolinium-DTPA. J Magn Res Imaging 1995; 5: 227-237.

    Google Scholar 

  124. Weissleder R, Elizondo G, Wittenberg J et al. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 1990; 175: 489-493.

    Google Scholar 

  125. Chambon C, Clement O, Leblanche A et al. Superparamagnetic ion oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging 1993; 11: 509-519.

    Google Scholar 

  126. Atkinson DJ, Burstein D, RR. First-pass cardiac perfusion: evaluation with ultrafast MR-imaging. Radiology 174, 757-762 (1990).

    Google Scholar 

  127. Van Rugge FP, Boreel JJ, Van der Wall EE et al. Cardiac firstpass and myocardial perfusion in normal subjects assessed by subsecond Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 1991; 15(6): 959-965.

    Google Scholar 

  128. Manning WJ, Atkinson DJ, Grossman W et al. Firstpass nuclear magnetic resonance imaging studies using Gadolinium-DTPA in patients with coronary artery disease. J Am Coll Cardiol 1991; 18: 959-965.

    Google Scholar 

  129. Schaefer S, Van Tyen R, Saloner D. Evaluation of myocardial perfusion abnormalities with Gadolinium-enhanced snapshot MR-imaging in humans. Radiology 1992; 185: 795-801.

    Google Scholar 

  130. Hartnell G, Cerel A, Kamalesh M et al. Detection of myocardial ischemia: value of combined myocardial perfusion and cineangiographic MR imaging. AJR 1994; 163: 1061-1067.

    Google Scholar 

  131. Klein MA, Collier BD, Hellman RS et al. Detection of chronic coronary artery disease: value of pharmacologically stressed, dynamically enhanced Turbo-Fast Low-Angle Shot MR images. AJR 1993; 161: 257-263.

    Google Scholar 

  132. Eichenberger AC, Schuiki E, Koechli VD et al. Ischemic heart disease: assessment with Gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 1994; 4: 425-431.

    Google Scholar 

  133. Walsh EG, Doyle M, Lawson M et al. Multislice first-pass myocardial perfusion imaging on a conventional clinical scanner. MRM 1995; 34: 39-47.

    Google Scholar 

  134. Matheijssen NAA, Louwerenburg HW, Van Rugge FP et al. Comparison of ultrafast dipyridamole magnetic resonance imaging with dipyridamole SestaMIBI SPECT for detection of perfusion abnormalities in patients with single vessel coronary artery disease: Assessment by quantitative model fitting. Magn Reson Med 1996; 35: 221-228.

    Google Scholar 

  135. Keijer JT, van Rossum AC, van Eenige MJ et al. Magnetic Resonance Imaging of regional myocardial perfusion in patients with single vessel coronary artery disease: quantitative comparison with 201Thallium-SPECT and coronary angiography. Proceedings 4th annual meeting ISMRM 1996, p 180 (abstract).

  136. Wilke N, Jerosch-Herold M, Stillman AE et al. Myocardial perfusion reserve and transmural perfusion in patients with coronary artery disease. Proceedings 3rd annual meeting ISMRM 1995, p 1400 (abstract).

  137. Keijer JT, Van Rossum AC, Wilke N, Van Eenige MJ et al. Magnetic resonance imaging of myocardial perfusion in single vessel coronary artery disease: implications for transmural assessment of myocardial perfusion. Proceedings 4th annual meeting ISMRM 1996, p 680 (abstract).

  138. Edelman RR. Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 1994; 190: 771-777.

    Google Scholar 

  139. Laub G, Simonetti O. Assessment of myocardial perfusion with saturation-recovery Turbo-FLASH sequences. Proceedings 4th annual meeting ISMRM 1996, p 179 (abstract).

  140. Schwitter J, Debatin JF, Von Schulthess GK et al. Assessment of myocardial perfusion with multi-planar echo-planar imaging: influence of contrast medium doseo-initial experience in patients. Proceedings 4th annual meeting ISMRM 1996, p 681 (abstract).

  141. Walsh EG, Doyle M, Pohost GM. Multislice myocardial perfusion imagingusing BRISK. Proceedings 4th annual meeting ISMRM 1996, p 683 (abstract).

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Visser, C.A., Keijer, J.T., Bax, J.J. et al. Myocardial perfusion imaging: clinical experience and recent progress in radionuclide scintigraphy and magnetic resonance imaging. Int J Cardiovasc Imaging 13, 415–431 (1997). https://doi.org/10.1023/A:1005737725964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005737725964

Navigation