Skip to main content
Log in

Plant-Growth Inhibitory Activity of Cedrelanolide from Cedrela salvadorensis

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The effect of cedrelanolide, the most abundant limonoid isolated from Cedrela salvadorensis (Meliaceae), was assayed as a plant-growth inhibitory compound against monocotyledonous and dicotyledonous seeds. This compound inhibited germination, seed respiration, and seedling dry weights of some plant species (Lolium multiflorum, var. Hercules, Triticum vulgare, var. Salamanca, Physalis ixocarpa, and Trifolium alexandrinum). Our results indicate that cedrelanolide interferes with monocot preemergence properties, mainly energy metabolism of the seeds at the level of respiration. In addition, the compound inhibits photophosphorylation, H+ uptake, and noncyclic electron flow. This behavior might be responsible for its plant-growth inhibitory properties and its possible role as an allelopathic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ACHNINE, L., MATA, R., IGLESIAS-PRIETO, R., and LOTINA-HENNSEN, B. 1998. Impairment of photosystem II donor side by the natural product odoratol. J. Agric. Food Chem. 46:5313-5317.

    Google Scholar 

  • ACHNINE, L., MATA, R., and LOTINA-HENNSEN, B. 1999. Interference of the natural product 7-oxo-7-deacetoxygedunin with CF0 of H+-ATPase on spinach chloroplasts. Pestic. Biochem. Physiol. 63:139-149.

    Google Scholar 

  • CALERA, M. R., SOTO, F., SANCHEZ, P., BYE, R., HERNáNDEZ, B., ANAYA, A. L., LOTINA-HENNSEN, B., and MATA, R. 1995. Biochemically active sesquiterpene lactones from Ratibida mexicana. Phytochemistry 40:419-425.

    Google Scholar 

  • CéSPEDES, C. L., CALDERÓN, J. S., KING-DIAZ, B., and LOTINA-HENNSEN, B. 1998. Phytochemical and biochemical characterization of epimeric photogedunin derivatives. Their different sites of interaction on the redox electron transport carrier of Spinacea oleracea L. J. Agric. Food Chem. 46:2810-2816.

    Google Scholar 

  • CéSPEDES, C. L., CALDERÓN, J. S., SALAZAR, J. R., KING-DIAZ, B., and LOTINA-HENNSEN, B. 1999a. Allelopathic activity of photogedunins from Cedrela ciliolata (Meliaceae). Bol. Soc. Chil. Quím. 44:173-183.

    Google Scholar 

  • CéSPEDES, C. L., CALDERON, J. S., GÓMEZ-GARIBAY, F., SEGURA, R., KING-DIAZ, B., and LOTINAHENNSEN, B. 1999b. Phytogrowth properties of limonoids isolated from Cedrela ciliolata. J. Chem. Ecol. 25:2665-2676.

    Google Scholar 

  • CéSPEDES, C. L., CALDERÓN, J. S., LINA, L., and ARANDA, E. 2000. Growth inhibitory effects on fall armyworm. Spodoptera frugiperda of some limonoids isolated from Cedrela spp. (Meliaceae). J. Agric. Food Chem. 48:1903-1908.

    Google Scholar 

  • CHAMPAGNE, D. E., KOUL, O., ISMAN, M. B., SCUDDER, G. G. E., and TOWERS, G. H. N. 1992. Biological activity of limonoids from the rutales. Phytochemistry 31:377-394.

    Google Scholar 

  • DILLEY, R. A. 1972. Ion transport (H+, K+, Mg2+ exchange phenomena). Methods Enzymol. 24:68-74.

    Google Scholar 

  • EINHELLIG, F. A. 1986. Mechanisms and modes of action of allelochemicals, pp. 171-188, in R. A. Putnam and Ch-Sh. Tang (eds.). The Science of Allelopathy. John Wiley & Sons, New York.

    Google Scholar 

  • EINHELLIG, F. A. 1995. Mechanism of action of allelochemicals in a allelopathy, pp. 96-116, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy Organisms, Processes, and Applications, ACS Series 582, American Chemical Society, Washington, D.C.

    Google Scholar 

  • GOVINDACHARI, T. R., SURESH, G., BANUMATHY, B., MASILAMANI, S., GEETHA GOPALAKRISHNAN, and KUMARI, G. N. K. 1999. Antifungal activity of some B,D-seco limonoids from two meliaceous plants. J. Chem. Ecol. 25:923-933.

    Google Scholar 

  • HATFIELD, J. L., and KARLEN, D. L. 1994. Sustainable Agriculture Systems. Lewis Publishers, Boca Raton, Florida.

    Google Scholar 

  • ISMAN, M. B., MATSUURA, H., MACKINNON, S., DURST, T., TOWERS, G. H. N., and ARNASON, J. T. 1996. Phytochemistry of the Meliaceae: So many terpenoids, so few insecticides, pp. 155-178, in J. T. Romeo, J. A. Saunders, and P. Barbosa (eds.). Phytochemical Diversity and Redundancy in Ecological interactions. Plenum Press, New York.

    Google Scholar 

  • JIMéNEZ, A., MATA, R., LOTINA-HENNSEN, B., ANAYA, A. L., and VELASCO, L. 1996. Phytogrowth-inhibitory compounds from Malmea depressa. J. Nat. Prod. 59:202-204.

    Google Scholar 

  • JIMéNEZ, A., MATA, R., PEREDA-MIRANDA, R., CALDERON, J., ISMAN, M. B., NICOL, R., and ARNASON, J. T. 1997. Insecticidal limonoids from Swietenia humilis and Cedrela salvadorensis. J. Chem. Ecol. 23:1225-1234.

    Google Scholar 

  • KRAUS, W. 1995. Biologically active ingredients, pp. 35-88, in H. Schmutterer (ed.). The Neem Tree Azadirachta indica, A. Juss and Other Meliaceous Plants. Sources of Unique Natural Products from Integrated Pest Management, Medicine, Industry and Other Purposes XXIII. VCH, Weinheim.

    Google Scholar 

  • LI, H. H., NISHIMURA, H., HASEGAWA, K., and MIZUTANI, J. 1992. Allelopathy of Sasa cernua. J. Chem. Ecol. 18:1785.

    Google Scholar 

  • LOTINA-HENNSEN, B., MATA, R., CALDERÓN, J. S., CéSPEDES, C. L., and JIMENEZ-ESTRADA, M. 1998. Secondary metabolites isolated from Mexican plants: Target and mechanism of action on photosynthesis, pp. 731-749, in S. G. Pandalai and A. Gayathri. (eds.). Recent Research Developments in Agricultural & Food Chemistry, Vol. 2. Research Signpost, Trivandrum, India.

    Google Scholar 

  • LOWERY, D. T., EASTWELL, K. C., SMIRLE, M. J. 1997. Neem seed oil inhibits aphid transmission of potato virus Y to pepper. Ann. Appl. Biol. 130:217-225.

    Google Scholar 

  • MACKINNON, S., DURST, T., ARNASON, J. T., ANGERHOFER, C., PEZZUTO, J., SáNCHEZ-VINDAS, P. E., POVEDA, L. J., and GBEASSOR, M. 1997. Antimarial activity of tropical Meliaceae extracts and gedunin derivatives. J. Nat. Prod. 60:336-341.

    Google Scholar 

  • MATA, R. 1996. Bioactive compounds of medicinal and agrochemical interest from Mexican plants. Rev. Latinoam. Quím. 24:76-83.

    Google Scholar 

  • MATSUDA, H., YOSHIKAWA, M., and KUBO, M. 1998. Antinociceptive and antiinflammatory activities of limonin isolated from the fruits of Evodia rutaecarpa var bodinieri. Planta Med. 64:339-342.

    Google Scholar 

  • MILLS, J. D., MITCHELL, P., and SCHURMANN, P. 1980. Modulation of coupling ATPase activity in intact chloroplasts. FEBS Lett. 112:173-177.

    Google Scholar 

  • MOHR, H., and SCHOPFER, P. 1995. Plant Physiology. Springer-Verlag, Berlin. 629 pp.

    Google Scholar 

  • SAHA, S., OUITRAKUL, R., IZAWA, S., and GOOD, N. 1971. Electron transport and phosphorylation in chloroplasts in function of the electron acceptor. J. Biol. Chem. 246:3204-3209.

    Google Scholar 

  • SCHMUTTERER, H. 1995. The Neem Tree Azadirachta indica, A. Juss and Other Meliaceous Plants: Sources of Unique Natural Products for Integrated Pest Management, Medicine, Industry and Other Purposes. VCH, Weinheim.

    Google Scholar 

  • SEGURA, R., CALDERÓN, J., TOSCANO, R., GUTIéRREZ, A., and MATA, R. 1994. Cedrelanolide I, a new limonoid from Cedrela salvadorensis. Tetrahedron Lett. 35:3437-3440.

    Google Scholar 

  • SEGURA-CORREA, R., MATA, R., ANAYA, A. L., HERNANDEZ-BAUTISTA, B., VILLENA, R., SORIANOGARCIA, M., BYE, R., and LINARES, E. 1993. New tetranortriterpenoids from Swietenia humilis. J. Nat. Prod. 56:1567-1574.

    Google Scholar 

  • STRAIN, H. H., COPPE, B. T., and SVEC, W. A. 1971. Analytical procedures for the isolation, identification, estimation and investigation of the chlorophylls. Methods Enzymol. 23:452-466.

    Google Scholar 

  • TADA, K., TAKIDO, M., and KITANAKA, S. 1999. Limonoids from fruit of Melia toosendan and their cytotoxic activity. Phytochemistry 51:787-791.

    Google Scholar 

  • TAYLOR, D. A. H. 1979. A limonoid, Pseudrelone B, from Pseudocedrela kotschyii. Phytochemistry 18:1574-1576.

    Google Scholar 

  • VAN GORKOM, H. J., and GAST, P. 1996. Measurement of photosynthetic oxygen evolution, pp. 391-405, in J. Amesz and A. J. Hoff (eds). Biophysical Techniques in Photosynthesis. Advances in Photosynthesis. Kluwer Academic, Dordrecht, The Netherlands.

    Google Scholar 

  • VEITCH, N. C., WRIGHT, G. A., and STEVENSON, P. C. 1999. Four new tetranortriterpenoids from Cedrela odorata associated with leaf rejection by Exopthalmus jekelianus. J. Nat. Prod. 62:1260-1263.

    Google Scholar 

  • WEIMIN, Z., WOLFENDER, J. L., HOSTETTMANN, K., RENSHENG, X., and GUOWEI, Q. 1998. Antifungal alkaloids and limonoids derivatives from Dictamnus dasycarpus. Phytochemistry 47:7-11.

    Google Scholar 

  • ZHOU, J-B., TADERA, K., MINAMI, Y., YAGI, F., KURAWAKI, J., TAKEZAKI, K., and NAKATANI, M. 1998. New limonoids from Melia toosendan. Biosci. Biotechnol. Biochem. 62:496-500.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Céspedes, C.L., Calderón, J.S., Salazar, J.R. et al. Plant-Growth Inhibitory Activity of Cedrelanolide from Cedrela salvadorensis. J Chem Ecol 27, 137–149 (2001). https://doi.org/10.1023/A:1005628302652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1005628302652

Navigation