Skip to main content
Log in

Development of an insulated reporter system to search for cis-acting DNA sequences required for dosage compensation in Drosophila

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Dosage compensation (equalisation of X-linked gene products) occurs in Drosophila melanogaster by a two-fold transcriptional increase of X-linked gene expression in the male. The cis-acting X-linked DNA sequences required for dosage compensation (called DCREs) remain elusive, despite numerous attempts to identify them. We have developed an insulated reporter system to minimise problems previously encountered with identifying these elements. The system consists of the constitutive autosomal armadillo promoter fused to the lacZ reporter gene (called arm-lacZ) which was flanked by SCS insulator elements to block potential repressive effects of an autosomal chromatin environment. Seven X-linked DNA fragments, totaling 62.7 kb, were each inserted between the SCS element and the armadillo promoter. If an X-linked fragment contains a DCRE, then transgenic males carrying an autosomal insert of the construct should produce twice the ß-galactosidase activity of females. However, in all cases, males and females expressed the same level of lacZ. Thus, it's likely that none of the X-linked fragments contained a DCRE, suggesting these elements may be rarer than previously thought. The insulated reporter system was also used to test the hypothesis that some genes may be dosage compensated due to repression by Sex lethal (Sxl) in females. A fragment from the runt gene containing three Sxl binding sites was inserted into the 3′ untranslated region of arm-lacZ. Transgenic males carrying an autosomal insert of the construct had on average 1.31–1.46 times the level of ß-galactosidase than females, suggesting that some genes could be compensated, at least partially, by Sxl repression in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amrein, H. & R. Axel, 1997. Genes expressed in neurons of adult male Drosophila. Cell 88: 459–469.

    Article  PubMed  CAS  Google Scholar 

  • Ausubel, F.M., R. Brent, R.E. Kingston, D.D. Moore, J.G. Seidman, J.A. Smith & K. Struhl, 1997. Current Protocols in Molecular Biology. Wiley, New York.

    Google Scholar 

  • Bashaw, G.J. & B.S. Baker, 1995. The msl-2 dosage compensation gene of Drosophila encodes a putative binding protein whose expression is sex specifically regulated by Sex lethal. Development 121: 3245–3258.

    PubMed  CAS  Google Scholar 

  • Bashaw, G.J. & B.S. Baker, 1997. The regulation of Drosophila msl-2 gene reveals a function for Sex lethal in translational control. Cell 89: 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Belote, J.M. & J.C. Lucchesi, 1980. Male specific lethal mutations of Drosophila melanogaster. Genetics 96: 165–186.

    PubMed  CAS  Google Scholar 

  • Bone, J.R., J. Lavender, R. Richman, M.J. Palmer, B.M. Turner & M.I. Kuroda, 1994. Acetylated histone H4 on the male X chromosome is associated with dosage compensation in Drosophila. Genes Dev. 8: 96–104.

    PubMed  CAS  Google Scholar 

  • Bossy, B., L.M.C. Hall & P. Spierer, 1984. Genetic activity along 315 kilobases of the Drosophila melanogaster genome. EMBO J. 3: 2537–2541.

    PubMed  CAS  Google Scholar 

  • Fouts, D., R. Ganguly, A.G. Gutierrez, J.C. Lucchesi & J.E. Manning, 1988. Nucleotide sequence of the Drosophila glucose-6-phosphate dehydrogenase gene and comparison with homologous human gene. Gene 63: 261–275.

    Article  PubMed  CAS  Google Scholar 

  • Gausz, J., L.M.C. Hall, A. Spierer & P. Spierer, 1984. Molecular genetics of the rosy-Ace region of Drosophila melanogaster. Genetics 112: 65–78.

    Google Scholar 

  • Gergen, J.P., 1987. Dosage compensation in Drosophila: Evidence that daughterless and Sex-lethal control X chromosome activity at the blastoderm stage of embryogenesis. Genetics 117: 477–485.

    Google Scholar 

  • Geyer, P.K., 1997. The role of insulator elements in defining domains of gene expression. Curr. Opin. Genet. Dev. 7: 242–248.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, S., N. Chatterjee, D. Bunick, J.E. Manning & J.C. Lucchesi, 1989. The LSP-a gene of Drosophila melanogaster exhibits dosage compensation when it is relocated to a different site on the X chromosome. EMBO J. 8: 1191–1196.

    PubMed  CAS  Google Scholar 

  • Gorman, M., M.I. Kuroda & B.S. Baker, 1993. Regulation of the sex-specific binding of the maleless dosage compensation protein to the male X chromosome in Drosophila. Cell 72: 39–49.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., P. Szauter & J. C. Lucchesi, 1998. Targeting of MOF, a putative histone acetyl transferase to the X chromosome of Drosophila melanogaster. Dev. Genet. 22: 56–64.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, A.G., A.C. Christensen, J.E. Manning & J.C. Lucchesi, 1989. Cloning and dosage compensation of the 6-phosphogluconate dehydrogenase gene (Pgd +) of Drosophila melanogaster. Develop. Genet. 10: 155–161.

    Article  CAS  Google Scholar 

  • Hall, L.M., P.J. Mason & P. Spierer, 1984. Transcripts, genes and bands in 315,000 base pairs of Drosophila DNA. J. Mol. Biol. 169: 83–96.

    Google Scholar 

  • Hazelrigg, T., R. Levis & G.M. Rubin, 1984. Transformation of the white locus DNA in Drosophila: Dosage compensation, zeste interactions and position effects. Cell 36: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, A., D. Hilfiker-Kleiner, A. Pannuti & J.C. Lucchesi, 1997. mof, A putative acetyl transferase gene related to the tip60 and MOZ human genes and to the SAS genes of yeast, is required for dosage compensation in Drosophila. EMBO J. 16: 2054–2060.

    Article  PubMed  CAS  Google Scholar 

  • Hilfiker, A., Y. Yang, D.H. Hayes, C.A. Beard, J.E. Manning & J.C. Lucchesi, 1994. Dosage compensation in Drosophila: the X chromosomal binding of MSL-1 and MLE is dependent on Sxl activity. EMBO J. 13: 3542–3550.

    PubMed  CAS  Google Scholar 

  • Hofmann, A. & G. Korge, 1987. Upstream sequences of dosage compensated and noncompensated alleles of the larval secretion protein gene Sgs-4 in Drosophila melanogaster. Chromosoma 95: 209–215.

    Article  Google Scholar 

  • Huijser, P., W. Henning & R. Dijkhof, 1987. Poly (dC-dA/dG-dT) repeats in the Drosophila genome: a key function of dosage compensation for a sex linked enzyme in butterflies (Heliconius). Heredity 43: 71–77.

    Google Scholar 

  • Kelley, R.L., I. Solovyeva, L.M. Lyman, R. Richman, V. Solovyev & M.I. Kuroda, 1995. Expression of msl-2 causes assembly of dosage compensation regulators on the X chromosome and female lethality in Drosophila. Cell 81: 867–877.

    Article  PubMed  CAS  Google Scholar 

  • Kelley, R.L., J. Wang, L. Bell & M.I. Kuroda, 1997. Sex lethal controls dosage compensation in Drosophila by a nonsplicing mechanism. Nature 387: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Kellum, R. & P. Schedl, 1991. A position-effect assay for boundaries of higher order chromosomal domains. Cell 64: 941–950.

    Article  PubMed  CAS  Google Scholar 

  • Kellum, R. & P. Schedl, 1992. A group of SCS elements function as domain boundaries in an enhancer blocking assay. Mol. Cell Biol. 12: 2424–2431.

    PubMed  CAS  Google Scholar 

  • Krumm, A., G.E. Roth & G. Korge, 1991. Transformation of salivary gland secretion protein Sgs-4 in Drosophila: stage and tissue specific regulation, dosage compensation and position effect. Proc. Natl. Acad. Sci. USA 82: 5055–5059.

    Article  Google Scholar 

  • Kuroda, M.I., M.J. Kernan, R. Kreber, B. Ganetsky & B.S. Baker, 1991. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66: 935–947.

    Article  PubMed  CAS  Google Scholar 

  • Levis, R., T. Hazelrigg & G.M. Rubin, 1985. Separable cis-acting control elements for expression of the white gene of Drosophila. EMBO J. 4: 3489–3499.

    PubMed  CAS  Google Scholar 

  • Levy, L.S. & J.E. Manning, 1981. Messenger RNA sequence complexity and homology in developmental stages of Drosophila. Dev. Biol. 85: 141–149.

    Article  PubMed  CAS  Google Scholar 

  • Lindsley, D.L. & G.G. Zimm, 1992. The genome of Drosophila melanogaster. Academic Press, New York.

    Google Scholar 

  • Lowenhaupt, K., A. Rich & M.L. Pardue, 1989. Non-random distribution of long mono-and dinucleotide repeats in Drosophila chromosomes: correlations with dosage compensation, heterochromatin and recombination. Mol. Cell. Biol. 9: 1173–1183.

    PubMed  CAS  Google Scholar 

  • Lu, L., K.A. Berkey & R.A. Casero, 1996. RGFGIGS is an amino acid sequence required for acetyl coenzyme. A binding and activity of human spermidine/spermine N1 acetyltransferase. J. Biol. Chem. 271: 18920–18924.

    Article  PubMed  CAS  Google Scholar 

  • Lucchesi, J.C., 1998. Dosage compensation in flies and worms: the ups and downs of X-chromosome regulation. Curr. Opin. Genet. Dev. 8: 179–184.

    Article  PubMed  CAS  Google Scholar 

  • Lyman, L.M., K. Copps, L. Rastelli, R.L. Kelley & M.I. Kuroda, 1997. Drosophila male-specific-lethal-2 protein: Structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147: 1743–1753.

    PubMed  CAS  Google Scholar 

  • Madueno, E., G. Papagiannakis, G. Rimmington, R.D.C. Saunders, C. Savakis, I. Siden-Kiamos, G. Skardvis, L. Spanos, J. Trenear, P. Adam, M. Ashburner, P. Benos, V.N. Bolshakov, D. Coulson, D.M. Glover, S. Herrmen, F.C. Kafatos, C. Louis, T. Majerus & J. Modolell, 1995. A physical map of the X chromosome of Drosophila melanogaster: cosmid contigs and sequence tagged sites. Genetics 139: 1631–1647.

    PubMed  CAS  Google Scholar 

  • McNabb, S.L. & S.K. Beckendorf, 1986. cis-acting sequences which regulate expression of the Sgs-4 glue protein gene of Drosophila. EMBO J. 5: 2331–2340.

    PubMed  CAS  Google Scholar 

  • Meller, V.H., K.H. Wu, G. Roman, M.I. Kuroda & R.L. Davis, 1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88: 445–457.

    Article  PubMed  CAS  Google Scholar 

  • Nüsslein-Volhard, C. & E.F. Wieschaus, 1980. Mutations affecting segment number and polarity in Drosophila embryos. Nature 287: 795–801.

    Article  PubMed  Google Scholar 

  • Palmer, M.J., V.A. Mergner, R. Richman, J.E. Manning, M.I. Kuroda & J.C. Lucchesi, 1993. The male specific lethal-one (msl-1) gene of Drosophila melanogaster encodes a novel protein that associates with X chromosomes in males. Genetics 134: 545–557.

    PubMed  CAS  Google Scholar 

  • Palmer, M.J., R. Richman, L. Richter & M.I. Kuroda, 1994. Sex specific regulation of the male specific lethal-1 dosage compensation gene in Drosophila. Genes Dev. 8: 698–706.

    PubMed  CAS  Google Scholar 

  • Pardue, M.L., K. Lowenhaupt, A. Rich & A. Nordheim, 1987. (dC–dA)n·(dG–dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila melanogaster with implications for roles in chromosomal structure and function. EMBO J. 6: 1781–1789.

    PubMed  CAS  Google Scholar 

  • Pirrotta, V., H. Steller & M.P. Bozzetti, 1985. Multiple upstream regulatory elements control the expression of the Drosophila white gene. EMBO J. 4: 3501–3508.

    PubMed  CAS  Google Scholar 

  • Polito, C., A. Pannuti & J.C. Lucchesi, 1990. Dosage compensation in Drosophila melanogaster: Male and female embryos generated by segregation distortion of the sex chromosomes. Dev. Genet. 11: 249–253.

    Article  PubMed  CAS  Google Scholar 

  • Qian, S. & V. Pirrotta, 1995. Dosage compensation of the Drosophila white gene requires both the X chromosome environment and multiple intragenic elements. Genetics 139: 733–744.

    PubMed  CAS  Google Scholar 

  • Riggleman, B., E. Wieschaus & P. Schedl, 1989. Molecular analysis of the armadillo locus: uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev. 3: 96–113.

    PubMed  CAS  Google Scholar 

  • Roehrdanz, R.L., J.M. Kitchens & J.C. Lucchesi, 1976. Lack of dosage compensation for an autosomal gene relocated to the X chromosome in Drosophila melanogaster. Genetics 139: 733–744.

    Google Scholar 

  • Roseman, R.R., J.M. Swan & P.M. Geyer, 1995. A Drosophila insulator protein facilitates dosage compensation of the X chromosome mini-white gene located at autosomal insertion sites. Development 12: 3473–3582.

    Google Scholar 

  • Samuels, M.E., D. Bopp, R.A. Colvin, R. Roscigno, M. Garcia-Blanco & P. Schedl, 1994. RNA binding by Sxl proteins in vitro and in vivo. Mol. Cell Biol. 14: 4975–4990.

    PubMed  CAS  Google Scholar 

  • Scott, M.J. & J.C. Lucchesi, 1991. Structure and expression of the Drosophila melanogaster gene encoding 6-phosphogluconate dehydrogenase. Gene 109: 177–183.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J.A. & J.T. Lis, 1987. A germline transformation analysis reveals flexibility in the organisation of the heat shock consensus elements. Nucl. Acids Res. 15: 2971–2989.

    PubMed  CAS  Google Scholar 

  • Spradling, A.G. & G.M. Rubin, 1982. Transposition of cloned P elements into Drosophila germline chromosomes. Science 218: 341–347.

    PubMed  CAS  Google Scholar 

  • Struhl, K., 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes & Dev. 12: 599–606.

    CAS  Google Scholar 

  • Thummel, C.S., A.M. Boulet & H.D. Lipshitz, 1988. Vectors for Drosophila P-element-mediated transformation and tissue culture transfection. Gene 74: 445–456.

    Article  PubMed  CAS  Google Scholar 

  • Tobler, J., J.T. Bowman & J.R. Simmons, 1971. Gene modulation in Drosophila: dosage compensation and relocated v + genes. Biochem. Genet. 5: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Turner, B.M., A.J. Birley & J. Lavender, 1992. Histone H4 isoforms acetylated at specific residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69: 375–384.

    Article  PubMed  CAS  Google Scholar 

  • Vazquez, J. & P. Schedl, 1994. Sequences required for enhancer blocking activity of scs are located within two nuclease-hypersensitive sites. EMBO J. 13: 5984–5993.

    PubMed  CAS  Google Scholar 

  • Vincent, J., C.H. Girdham & P.H. O'Farrell, 1994. A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics. Dev. Biol. 164: 328–331.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Y. Yang, M.J. Scott, A. Pannuti, K.C. Fehr, A. Eisen, E.V. Koonin, D.L. Fouts, R. Wrightsman, J.E. Manning & J.C. Lucchesi, 1995. Male-specific-lethal-2, a dosage compensation gene of Drosophila, undergoes sex specific regulation and encodes a protein with a RING finger and a metallothionein-like cluster. EMBO J. 14: 2884–2895.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzsimons, H.L., Henry, R.A. & Scott, M.J. Development of an insulated reporter system to search for cis-acting DNA sequences required for dosage compensation in Drosophila. Genetica 105, 215–226 (1999). https://doi.org/10.1023/A:1003801402153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1003801402153

Navigation