Skip to main content
Log in

Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Transfer of plasmid RP4 to indigenous bacteria in bulk soil could only be detected in soil with nutrient amendment. Lack of physiological active donor and recipient cells was apparently one of the limiting factors in un-amended bulk soil. Plasmid transfer was detected both in the spermosphere and rhizosphere of barley seedlings. Transfer occured from seed coated donor bacteria (i) to introduced recipient bacteria and (ii) to indigenous bacteria present in soil. Plasmid transfer was also detected from donor bacteria introduced to the soil to seed coated recipient bacteria. Transfer efficiencies in the rhizosphere were significantly below the transfer efficiencies obtained in the spermosphere. The transfer efficiencies detected in the barley spermosphere were among the highest reported from any natural environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bale MJ, Fry JC & Day MJ (1988) Transfer and occurrence of large mercury resistance plasmids in river epilithon. Appl. Environ. Microbiol. 54: 972-978

    Google Scholar 

  • Balows A, Trüper HG, Dworkin M, Harder W & Schleifer KH (1992) The Prokaryotes, Second Edition. SpringerVerlag, New York

    Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, De Lorenzo V, Dowling DN & O'Gara F (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl. Environ. Microbiol. 61: 1946-1952

    Google Scholar 

  • Christensen H, Rønn R, Ekelund F & Christensen S (1995) Bacterial production determined by [3H]thymidine incorporation in field rhizospheres as evaluated by comparison to rhizodeposition. Soil Biol. Biochem. 27: 93-99

    Google Scholar 

  • Cresswell N & Wellington EMH (1992) Detection of genetic exchange in the terrestrial environment. In: Wellington EMH & van Elsas JD (Eds) Genetic interactions among microorganisms in the natural environment. (pp 59-82). Pergamon Press, Oxford

    Google Scholar 

  • Datta N, Hedges RW, Shaw EJ, Sykes RB & Richmond MH (1971) Properties of an R factor from Pseudomonas aeruginosa. J. Bacteriol. 108: 1244-1249

    Google Scholar 

  • de Weger LA, van der Bij AJ, Dekkers LC, Simons M, Wijffelman CA & Lugtenberg BJJ (1995) Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS. Microbiol. Ecol. 17: 221-228

    Google Scholar 

  • Gould WD, Hagedorn C, Bardinelli TR & Zablotowicz RM (1985) New selective media for enumeration and recovery of fluorescent pseudomonads from various habitats. Appl. Environ. Microbiol. 49: 28-32

    Google Scholar 

  • Jacobsen CS & Pedersen JC (1992) Mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D) in soil inoculated with Pseudomonas cepaciaDB01(pRO101), Alcaligenes eutrophusAEO106(pRO101) and Alcaligenes eutrophusJMP134(pJP4): effects of inoculation level and substrate concentration. Biodegradation 2: 253-263

    Google Scholar 

  • Kinkle BK & Schmidt EL (1991) Transfer of the pea symbiotic plasmid pJB5JI in nonsterile soil. Appl. Environ. Microbiol. 57: 3264-3269

    Google Scholar 

  • Lilley AK, Fry JC, Day MJ & Bailey MJ (1994) In situtransfer of an exogenously isolated plasmid Pseudomonasspp. in sugar beet rhizosphere. Microbiology 140: 27-33

    Google Scholar 

  • Lugtenberg BJJ & de Weger LA (1992) Plant root colonization by Pseudomonas spp. In: Galli et al. (Eds) Pseudomonas. Molecular Biology and Biotechnology. (pp 13-19). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Lynch JM (1990) Introduction: some consequences of microbial rhizosphere competence for plant and soil. In: Lynch JM (Eds) The rhizosphere. (pp 1-10). Wiley & Sons, Chichester, England

    Google Scholar 

  • Pedersen JC (1992) Natamycin as a fungicide in agar media. Appl. Environ. Microbiol. 58: 1064-1066

    Google Scholar 

  • Richaume A, Smit E, Faurie G & van Elsas JD (1992) Influence of soil type on the transfer of plasmid RP4p from Pseudomonas fluorescensto introduced recipient and to indigenous bacteria. FEMS Microbiol. Ecol. 101: 281-292

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular Cloning - A Laboratory Manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Smit E & Van Elsas JD (1990) Determination of plasmid transfer frequency in soil: Consequences of bacterial mating on selective agar media. Curr. Microbiol. 21: 151-157

    Google Scholar 

  • Smit E, van Elsas JD, van Veen JA & de Vos WM (1991) Detection of plasmid transfer from Pseudomonas fluorescensto indigenous bacteria in soil by using bacteriophage ϕR2f for donor counter-selection. Appl. Environ. Microbiol. 57: 3482-3488

    Google Scholar 

  • Stotzky G, Devanas MA & Zeph LR (1990) Methods for studying bacterial gene transfer in soil by conjugation and transduction. In: Neidleman SL & Laskin AI (Eds) Advances in Applied Microbiology. (pp 57-169). Academic Press, Inc., San Diego

    Google Scholar 

  • Sørensen SJ, Kroer N, Sørensen E, Sengeløv G & Barkay T (1996) Conjugation in aquatic environments. In: Akkermans ADL, van Elsas JD & de Bruijn FL (Eds) Molecular Microbial Ecology Manual. Kluwer academic publishers, Dordrecht

    Google Scholar 

  • Top E, Mergeay M, Springael D & Verstraete W (1990) Gene escape model: Transfer of heavymetal resistance genes fromEscherichia colito Alcaligenes eutrophuson agar plates and in soil samples. Appl. Environ. Microbiol. 56: 2471-2479

    Google Scholar 

  • Trevors JT & Berg G (1989) Conjugative RP4 transfer between psedumonads in soil and recovery of RP4 plasmid DNA from soil. System. Appl. Microbiol. 11: 223-227

    Google Scholar 

  • van Elsas JD & Trevors JT (1990) Plasmid transfer to bacteria in soil and rhizosphere: problem and perspectives. In: Fry JC & Day MJ (Eds) Bacterial Genetics in Natural Environments. (pp 188-199). Chapman and Hall, London

    Google Scholar 

  • van Elsas JD, Trevors JT & Starodub ME (1988) Bacterial conjugation between pseudomonads in the rhizospere of wheat. FEMS Microbiol. Ecol. 53: 299-306

    Google Scholar 

  • van Elsas JD, Trevors JT, Starodub ME & van Overbeek LS (1990) Transfer of plasmid RP4 between pseudomonads after introduction into soil; influence of spatial and temporal aspects of inoculation. FEMS Microbiol. Ecol. 73: 1-12

    Google Scholar 

  • van Elsas JD, van Overbeek LS & Fouchier R (1991) A specific marker, pat, for studying the fate of introduced bacteria and their DNA in soil using a combination of detection techniques. Plant Soil 138: 49-60

    Google Scholar 

  • Walter MV, Porteous LA, Fieland VP, Seidler RJ & Armstrong JL (1991) Formation of transconjugants on plating media following in situconjugation experiments. Can. J. Microbiol. 37: 703-707

    Google Scholar 

  • Walter MV, Porteous LA, Ganio L & Seidler RJ (1991) A Microcosm for measuring survival and conjugation of genetically engineered bacteria in rhizosphere environments. Curr. Microbiol. 22: 117- 121

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Søren J. Sørensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sørensen, S.J., Jensen, L.E. Transfer of plasmid RP4 in the spermosphere and rhizosphere of barley seedling. Antonie Van Leeuwenhoek 73, 69–77 (1998). https://doi.org/10.1023/A:1000661115753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1000661115753

Navigation