Skip to main content
Log in

The Influence of Structure and Lipophilicity of Hydantoin Derivatives on Anticonvulsant Activity

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The lipophilicity of a representative number of hydantoin derivatives was experimentally determined by RP-HPLC. The stationary phase of RP-HPLC proved a good model to simulate effects of membrane transport. These experimental values were correlated to theoretically estimated lipophilicity values on the basis of global minima structures of the compounds studied. Both these lipophilicity and structure similarities within a proposed pharmacological model for binding the hydantoin derivatives along the sodium channel were classified with respect to their biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kleinpeter, E. Struct. Chem. 1997, 8, 161.

    Google Scholar 

  2. Elderfield, R. C. Heterocycl. Compd. 1957, 5, 254.

    Google Scholar 

  3. Seydel, J. K.; Schaper, K.-J. Chemische Struktur und Biologische Wirkung von Wirkstoffen, Methoden der quantitativen Struktur-Wirkungsanalyse; Verlag Chemie Weinheim; New York, 1979.

    Google Scholar 

  4. Braumann, T. J. Chromatogr. 1986, 373, 191.

    PubMed  Google Scholar 

  5. Meldrum, B. S. Epilepsia 1997, 38(suppl. 9), 7.

    Google Scholar 

  6. Forth, W.; Henschler, D.; Rummel, W.; Starke, K. Allgemeine und spezielle Pharmakologie und Toxikologie, 6, Auflage; Wirtschaftsverlag Mannheim; Leipzig, Wien, Zürich, 1992.

    Google Scholar 

  7. Brouillette, W. J.; Brown, G. B.; DeLorey, T. M.; Liang, G. J. Pharm. Sci. 1990, 79, 871.

    PubMed  Google Scholar 

  8. Brouillette, W. J.; Brown, G. B.; DeLorey, T. M.; Shirali, S. S.; Grunewald, G. L. J. Med. Chem. 1988, 31, 2218.

    PubMed  Google Scholar 

  9. Brouillette, W. J.; Jestkov, V. P.; Brown, M. L.; Akhtar, M. S.; DeLorey, T. M.; Brown, G. B. J. Med. Chem. 1994, 37, 3289.

    PubMed  Google Scholar 

  10. Unverferth, K.; Engel, J.; Höfgen, N.; Rostock, A.; Günther, R.; Lankau, H.-J.; Menzer, M.; Rolfs, A.; Liebscher, J.; Müller, B.; Hofmann, H.-J. J. Med. Chem. 1998, 41, 63.

    PubMed  Google Scholar 

  11. Jones, G. L.; Woodbury, D. M. Principles of drug action: structure-activity relationships and mechanisms. In Antiepileptic Drugs; Woodbury, D. L.; Penry, J. K.; Pippenger, C. E. (Eds.); Raven Press; New York, 1982.

    Google Scholar 

  12. Jones, G. L.; Woodbury, D. M. Drug Dev. Res. 1982, 2, 333.

    Google Scholar 

  13. Codding, P. W.; Duke, N. E.; Aha, L. J.; Palmer, L. Y.; McClurg, D. K.; Szkaradzinska, M. B. Structural and computational studies of anticonvulsants. In Crystallogr. Model. Methods. Mol. Des. 1989; Bugg, E.; Ealick, M. (Eds.); Springer, New York, 1989.

    Google Scholar 

  14. Kleinpeter, E.; Heydenreich, M.; Kalder, L.; Koch, A.; Henning, D.; Kempter, G.; Benassi, R.; Taddei, F. J. Mol. Struct. 1997, 403, 111.

    Google Scholar 

  15. PrologP 5.1; compuDrug Ungarn, Manuel.

  16. Rekker, R. F.; Mannhold, R. Calculation of Drug Lipophilicity; VCH Weinheim; New York, 1992.

    Google Scholar 

  17. Kubinyi, H. QSAR: Hansch analysis and related approaches. In Methods and Principles in Medicinal Chemistry, vol. 1; Mannhold, R.; Krogsgaard-Larsen, P.; Timmerman, H. (Eds.); VCH Weinheim, 1993, p. 126.

  18. Seydel, J. K.; Cordes, H. P.; Albores-Valesco, M.; Visser, K.; Wiese, M. Methods and parameters to describe drug-membrane interaction and their use in QSAR. In Trends in QSAR and Molecular Modelling 92; Wermuth, C. G. (Ed.); ESCOM; Leiden, 1993.

    Google Scholar 

  19. Finkbeiner, H. L. J. Org. Chem. 1965, 30, 3414.

    Google Scholar 

  20. Bucherer, H. Th.; Lieb, V. A. J. Prakt. Chem. 1934, 141, 5.

    Google Scholar 

  21. Henze, H. R. J. Org. Chem. 1945, 10, 2.

    Google Scholar 

  22. Gagnon, P. E.; Boivin, J. L.; Boivin, P. A. Can. J. Res. Sect. B 1950, 28, 207.

    Google Scholar 

  23. Connors, T. A.; Ross, W. C. J. J. Chem. Soc. 1960, 2119.

  24. Henze, H. R.; Speer, R. J. J. Am. Chem. Soc. 1942, 64, 522.

    Google Scholar 

  25. Nitz, R. E.; Persch, W.; Schmidt, A. Arzneim.-Forsch. 1955, 5, 357.

    Google Scholar 

  26. Abshire, C. J. Experientia 1968, 24, 778.

    PubMed  Google Scholar 

  27. Novelli, A. An. Asoc. Quin. Arg. 1941, 29, 83.

    Google Scholar 

  28. Thompson, T. J.; Bredell, H. L.; Buffett, G. M. J. Am. Chem. Soc. 1925, 47, 875.

    Google Scholar 

  29. Thompson, T. J.; Bredell, H. L.; Buffett, G. M. J. Am. Chem. Soc. 1925, 47, 874.

    Google Scholar 

  30. Tiffenau, M.; Tchoubar, B.; Saias-Lambert. Bull. Soc. Chim. Fr. 1947, 4, 445.

    Google Scholar 

  31. Rogers, B. G.; Henze, H. R. J. Am. Chem. Soc. 1941, 63, 2190.

    Google Scholar 

  32. Dunnavant, W. R.; James, F. L. J. Am. Chem. Soc. 1956, 78, 2740.

    Google Scholar 

  33. Slotta, K. H.; Behnisch, R.; Szyzka, G. Ber. Dtsch. Chem. Ges. 1934, 67, 1529.

    Google Scholar 

  34. Goodson, L. H.; Honigberg, I. L.; Lehmann, J. J.; Burton, W. H. J. Org. Chem. 1960, 25, 1920.

    Google Scholar 

  35. Endler, A. S.; Becker, E. I. J. Am. Chem. Soc. 1954, 76, 6608.

    Google Scholar 

  36. Jitai Li; Lijum Li; Tongshuang Li; Jiankui Li. Ultrason. Sonochem. 1996, 3, 141.

    Google Scholar 

  37. Chem. Fabrik von der Heyden, DRP 335 993; C 1921, IV, 127.

  38. Henze, H. R.; Isbell, A. F. J. Am. Chem. Soc. 1955, 77, 6608.

    Google Scholar 

  39. Stajer, G.; Nemeth, P.; Szabo, E. A.; Vinkler, E.; Sohar, P. Arch. Pharm. 1978, 311, 421.

    Google Scholar 

  40. Spurlock, J. J. J. Am. Chem. Soc. 1953, 75, 1115.

    Google Scholar 

  41. McLean, M. J.; Seeger, D. R. J. Am. Chem. Soc. 1940, 62, 1416.

    Google Scholar 

  42. Kozak, J.; Musial, L. Bull. Int. Acad. Pol. Sci. Lett., Cl. Sci. Nat., Ser. A 1930, 432.

  43. Musial, L.; Staniec, J. Rocz. Chem. 1963, 37, 621.

    Google Scholar 

  44. Musial, L. Rocz. Chem. 1961, 35, 1651.

    Google Scholar 

  45. Musial, L. Rocz. Chem. 1958, 32, 1115.

    Google Scholar 

  46. Connolly, M. L. Science 1983, 221, 4612.

    Google Scholar 

  47. MOLCAD; Brickmann, J. TU Darmstadt.

  48. Ghose, A.; Crippen, G. J. Comp. Chem. 1986, 7(4), 565.

    Google Scholar 

  49. SYBYL Molecular Modelling Software; Version 6.4; TRIPOS Inc.; St. Louis, Missouri, 1997.

  50. Pihlaja, K.; Kleinpeter, E. Carbon-13 NMR Chemical Shifts in Structural and Stereochemical Analysis; VCH; New York, 1994.

    Google Scholar 

  51. Kwon, C.-H.; Igbal, M.-T.; Wurpel, J. N.-D. J. Med. Chem. 1991, 34, 1845.

    PubMed  Google Scholar 

  52. Ciechanowicz-Rutkowska, M.; Ragona, L.; Greco, F.; Zetta, L.; Pegna, M. Magn. Res. Chem. 1995, 33, 586.

    Google Scholar 

  53. Löscher, W. Europ. J. Pharm. 1998, 342, 1.

    Google Scholar 

  54. Fletcher, R.; Powell, M. J. D. Comput. J. 1963, 6, 163.

    Google Scholar 

  55. Audry, E.; Dubost, J. P.; Colleter, J. C.; Dallet, P. Eur. J. Med. Chem.-Chim. Ther. 1986, 21, 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Kleinpeter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholl, S., Koch, A., Henning, D. et al. The Influence of Structure and Lipophilicity of Hydantoin Derivatives on Anticonvulsant Activity. Structural Chemistry 10, 355–366 (1999). https://doi.org/10.1023/A:1022091411018

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022091411018

Navigation