Skip to main content
Log in

Solvent effect on the synthesis of clarithromycin: A molecular dynamics study

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Clarithromycin (6-O-methylerythromycin A) is a 14-membered macrolide antibiotic which is active in vitro against clinically important gram-positive and gram-negative bacteria. The selectivity of the methylation of the C-6 OH group is studied on erythromycin A derivatives. To understand the effect of the solvent on the methylation process, detailed molecular dynamics (MD) simulations are performed in pure DMSO, pure THF and DMSO:THF (1:1) mixture by using the anions at the C-6, C-11 and C-12 positions of 2′,4′′-[O-bis(TMS)]erythromycin A 9-[O-(dimethylthexylsilyl)oxime] under the assumption that the anions are stable on the sub-nanosecond time scale. The conformations of the anions are not affected by the presence of the solvent mixture. The radial distribution functions are computed for the distribution of different solvent molecules around the `O' of the anions. At distances shorter than 5 Å, DMSO molecules are found to cluster around the C-11 anion, whereas the anion at the C-12 position is surrounded by the THF molecules. The anion at the C-6 position is not blocked by the solvent molecules. The results are consistent with the experimental finding that the methylation yield at the latter position is increased in the presence of a DMSO:THF (1:1) solvent mixture. Thus, the effect of the solvent in enhancing the yield during the synthesis is not by changing the conformational properties of the anions, but rather by creating a suitable environment for methylation at the C-6 position.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kurath, P., Jones, P.H., Egan R.S. and Perun, T.J., Experientia, 27 (1971) 362.

    Article  PubMed  Google Scholar 

  2. Morimoto, S., Takahashi, Y., Watanabe, Y. and Omura, S., J. Antibiot., 37 (1984) 187.

    PubMed  Google Scholar 

  3. Morimoto, S., Misawa, Y., Adachi, T., Nagate, T., Watanabe Y. and Omura, S., J. Antibiot., 43 (1990) 286.

    PubMed  Google Scholar 

  4. Morimoto, S., Nagate, T., Sugita, K., Ono, T., Numata, K., Miyachi, J., Misawa Y. and Yamada, K., J. Antibiot., 43 (1990) 295.

    PubMed  Google Scholar 

  5. Atkins, P.J., Herbert T.O. and Jones, N.B., Int. J. Pharm., 30 (1986) 199.

    Article  Google Scholar 

  6. van Rooyen, G.F., Smit, M.J., de Jager, A.D., Hundt, H.K.L., Swart, K.J. and Hundt, A.F., J. Chromatogr. B, 768 (2002) 223.

    Google Scholar 

  7. Schlunzen, F., Zarivach, R., Harms, J., Bashan, A., Tocilj, A., Albrecht, R. and Yonath, A., Nature, 413 (2001) 814.

    Article  PubMed  Google Scholar 

  8. Morimoto, S., Watanabe, Y., Omura S. and Takahashi, Y., J. Antibiot., 37 (1984) 187.

    PubMed  Google Scholar 

  9. Watanabe, Y., Adachi, T., Asaka, T., Kashimura, M., Matsunaga T. and Morimoto, S., J. Antibiot., 46 (1993) 1163.

    PubMed  Google Scholar 

  10. Watanabe, Y., Morimoto, S., Adachi, T., Kashimura M. and Asaka, T., J. Antibiot., 46 (1993) 647.

    PubMed  Google Scholar 

  11. Watanabe, Y., Adachi, T., Asaka, T., Kashimura M. and Morimoto, S., Heterocycles, 31 (1990) 2121.

    Google Scholar 

  12. Watanabe, Y., Kashimura, M., Asaka, T., Adachi T. and Morimoto, S., Heterocycles, 36 (1993) 243.

    Google Scholar 

  13. Omura, S. Morimoto, S., Nagate, T., Adachi T. and Kohno, Y., Yakugaku Zasshi, 112 (1992) 593.

    PubMed  Google Scholar 

  14. Allevi, P., Longo A. and Anastasia, M., Bioorg. Med. Chem., 7 (1999) 2749.

    Article  PubMed  Google Scholar 

  15. Duran, D., Aviyente, V., and Baysal, C., J. Chem. Soc., Perkin Trans. 2, 3 (2002) 670.

    Google Scholar 

  16. Duran, D., Aviyente, V. and Baysal, C., J. Mol. Model., 10 (2004) 94.

    Article  Google Scholar 

  17. Duran, D., Aviyente, V. and Baysal, C., J. Comput.-Aided Mol. Design, 18 (2004).

  18. Kohli, M.R., Walsh C.T. and Burkart, M.D., Nature, 418 (2002) 658.

    Article  PubMed  Google Scholar 

  19. Baysal C. and Meirovitch, H., Biopolymers, 50 (1999) 329.

    Article  PubMed  Google Scholar 

  20. Baysal C. and Meirovitch, H., Biopolymers, 53 (2000) 423.

    Article  PubMed  Google Scholar 

  21. Iwasaki, H., Sugawara, Y., Adachi, T., Morimoto S. and Watanabe, Y., Acta Crystallogr., C49 (1993) 1227.

    Google Scholar 

  22. Awan, A., Brennan, R.J., Regan A.C. and Barber, J., J. Chem. Soc., Perkin Trans. 2, (2000) 1645.

    Google Scholar 

  23. Benarous-gharbi, J., Ladam, P., Delaforge M. and Girault, J.P., J. Chem. Soc., Perkin Trans. 2, (1993) 2303.

    Google Scholar 

  24. Luger P. and Maier, R., J. Cryst. Mol. Struct., 9 (1979) 329.

    Article  Google Scholar 

  25. Molecular Simulations Inc., S.R.,Waltham, San Diego, CA.

  26. GAUSSIAN 98 Revision A.1; Frisch, M.J.T., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery, J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Karkas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, G., Petersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T.A., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, V., Challacombe, M., Gill, P.M.W., Johnson, B.G., Chen, W., Wong, M.W., Andres, J.L., Head-Gordon, M., Replogle E.S. and Pople, J.A., Gaussian Inc., Pittsburgh, PA. 14, 1998.

  27. Dauber-osguthorpe, P., Roberts, V.A., Osguthorpe, D.J., Wolff, J., Genest, M. and Hagler, A.T., Proteins, 4 (1988) 31.

    Article  PubMed  Google Scholar 

  28. Andersen, H.C., J. Chem. Phys., 72 (1980) 2384.

    Article  Google Scholar 

  29. Verlet, L., Phys. Rev., 159 (1967) 98.

    Article  Google Scholar 

  30. Saunders, M., Houk, K.N., Wu, Y.-D., Still, W.C., Lipton, M., Chang, G. and Guida, W.C., J. Am. Chem. Soc., 112 (1990) 1419.

    Article  Google Scholar 

  31. Vasquez, M., Meirovitch E. and Meirovitch, H., J. Phys. Chem., 98 (1994) 9380.

    Article  Google Scholar 

  32. Richards, F.M., Annu. Rev. Biophys. Bioeng., 6 (1977) 151.

    Article  PubMed  Google Scholar 

  33. Allen, M.P., and Tildesley, D.J. ( Ed. ), Computer Simulation of Liquids, Clarendon Press, Oxford, UK, 1987, p. 204.

    Google Scholar 

  34. SPARTAN Version 5.1.3, Wavefunction, I.V.K.A., #370 Irvine, CA.

  35. Boys, S.F. and Bernardi F., Mol. Phys., 19 (1970) 553.

    Google Scholar 

  36. Famulari, A., Specchio, R., Sironi, M. and Raimondi, M., J. Chem. Phys., 108 (1998) 3296.

    Article  Google Scholar 

  37. Konko, N. and Dannenberg J.J., J. Phys. Chem. A, 105 (2001) 1944.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Baysal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duran, D., Aviyente, V. & Baysal, C. Solvent effect on the synthesis of clarithromycin: A molecular dynamics study. J Comput Aided Mol Des 18, 145–154 (2004). https://doi.org/10.1023/B:jcam.0000030037.67742.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jcam.0000030037.67742.cb

Navigation