Skip to main content
Log in

Linear and nonlinear functions on modeling of aqueous solubility of organic compounds by two structure representation methods

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

Several quantitative models for the prediction of aqueous solubility of organic compounds were developed based on a diverse dataset with 2084 compounds by using multi-linear regression analysis and backpropagation neural networks. The compounds were described by two different structure representation methods: (1) with 18 topological descriptors; and (2) with 32 radial distribution function codes representing the 3D structure of a molecule and eight additional descriptors. The dataset was divided into a training and a test set based on Kohonen's self-organizing neural network. Good prediction results were obtained for backpropagation neural network models: with 18 topological descriptors, for the 936 compounds in the test set, a correlation coefficient of 0.92, and a standard deviation of 0.62 were achieved; with 3D descriptors, for the 866 compounds in the test set, a correlation coefficient of 0.90, and a standard deviation of 0.73 were achieved. The models were also tested by using another dataset, and the relationship of the two datasets was examined by Kohonen's self-organizing neural network.

Abbreviations: BPG – backpropagation; KNN – Kohonen's self-organizing neural network; MLRA – multilinear regression analysis; MMP – mean molecular polarizability; RDF – radial distribution function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lipinski, C.A., Lombardo, F., Dominy, B.W. and Feeney, P.J., Adv. Drug Deliv. Rev., 23(1997) 3.

    Article  Google Scholar 

  2. Jorgensen, W.L. and Duffy, E.M., Adv. Drug Deliv. Rev., 54 (2002) 355.

    Article  PubMed  Google Scholar 

  3. Gao, H., Shanmugasundaram, V. and Lee, P., Pharmaceut. Res., 19 (2002) 497.

    Article  Google Scholar 

  4. Bodor, N. and Huang, M.J., J. Am. Chem. Soc., 113 (1991) 9480.

    Article  Google Scholar 

  5. Sutter, J.M. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 36 (1996) 100.

    Article  Google Scholar 

  6. Mitchell, B.E. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 38 (1998) 489.

    Article  Google Scholar 

  7. Mcelroy, N.R. and Jurs, P.C., J. Chem. Inf. Comput. Sci., 41 (2001) 1237.

    Article  PubMed  Google Scholar 

  8. Bruneau, P., J. Chem. Inf. Comput. Sci., 41 (2001) 1605.

    Article  PubMed  Google Scholar 

  9. Huuskonen, J., J. Chem. Inf. Comput. Sci., 40 (2000) 773.

    Article  PubMed  Google Scholar 

  10. Tetko, I.V., Tanchuk, V.Y., Kasheva, T.N. and Villa, A.E.P., J. Chem. Inf. Comput. Sci., 41 (2001) 1488.

    Article  PubMed  Google Scholar 

  11. Liu, R.F. and So, S.S., J. Chem. Inf. Comput. Sci., 41 (2001) 1633.

    Article  PubMed  Google Scholar 

  12. Yan, A.X. and Gasteiger, J., QSAR Comb. Sci., 22 (2003) 821.

    Article  Google Scholar 

  13. Yan, A.X. and Gasteiger, J., J. Chem. Inf. Comput. Sci., 43 (2003) 429.

    Article  PubMed  Google Scholar 

  14. Engkvist, O. and Wrede, P., J. Chem. Inf. Comput. Sci., 42 (2002) 1247.

    Article  PubMed  Google Scholar 

  15. Wegner, J.K. and Zell, A., J. Chem. Inf. Comput. Sci., 43 (2003) 1077.

    Article  PubMed  Google Scholar 

  16. Peterson, D.L. and Yalkowsky, S.H., J. Chem. Inf. Comput. Sci., 41 (2001) 1531.

    Article  PubMed  Google Scholar 

  17. Ran, Y.Q., Jain, N. and Yalkowsky, S.H., J. Chem. Inf. Comput. Sci., 41 (2001) 1208.

    Article  PubMed  Google Scholar 

  18. Yang, G., Ran, Y.Q. and Yalkowsky, S.H., J. Pharm. Sci., 91 (2002) 517.

    Article  PubMed  Google Scholar 

  19. Kuhne, R., Ebert, R.-U., Kleint, F., Schmidt, G. and Schuurmann, G., Chemosphere, 30 (1995) 2061.

    Article  Google Scholar 

  20. Klopman, G. and Zhu, H., J. Chem. Inf. Comput. Sci., 41 (2001) 439.

    Article  PubMed  Google Scholar 

  21. Hemmer, M.C., Steinhauer, V. and Gasteiger, J., Vibrat. Spectrosc., 19 (1999) 151.

    Google Scholar 

  22. Hemmer, M.C. and Gasteiger, J., Anal. Chim. Acta, 420 (2000) 145.

    Google Scholar 

  23. Zupan, J. and Gasteiger, J., Neural Networks in Chemistry and Drug Design, Second edn. Wiley-VCH, Weinheim, Germany, 1999.

    Google Scholar 

  24. Yalkowsky, S.H. and Dannefelser, R.M., The ARIZONA dATAbASE of Aqueous Solubility. College of Pharmacy, University of Arizona, Tucson, AZ, 1990.

    Google Scholar 

  25. Syracuse Research Corporation. Physical/Chemical Property Database (PHYSPROP), SRC Environmental Science Center, Syracuse, NY, 1994.

    Google Scholar 

  26. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Article  Google Scholar 

  27. Gasteiger, J. and Saller, H., Angew. Chem. Int. Ed. Engl., 24 (1985) 687.

    Article  Google Scholar 

  28. Gasteiger J., Empirical methods for the calculation of physicochemical data of organic compounds. In: Jochum, C., Hicks, M.G. and Sunkel, J. (Eds.), Physical Property Prediction in Organic Compounds. Springer Verlag, Heidelberg, Germany, 1988, pp. 119–138.

    Google Scholar 

  29. PETRA can also be accessed on the web: http://www2.chemie.uni-erlangen.de/software/petra/index.html, see also http://www.mol-net.de

  30. Ghose, A.K. and Crippen, G.M., J. Comput. Chem., 7 (1986) 565.

    Article  Google Scholar 

  31. Ghose, A.K. and Crippen, G.M., J. Chem. Inf. Comput. Sci., 27 (1987) 21.

    Article  PubMed  Google Scholar 

  32. Ghose, A.K., Pritchett, A. and Crippen, G.M., J. Comput. Chem., 9 (1988) 80.

    Article  Google Scholar 

  33. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Article  Google Scholar 

  34. Wagener, M., Sadowski, J. and Gasteiger, J., J. Am. Chem. Soc., 117 (1995) 7769.

    Article  Google Scholar 

  35. Gasteiger, J. and Hutchings, M.G., J. Chem. Soc. Perkin 2, (1984) 559.

    Google Scholar 

  36. Miller K.J., J. Am. Chem. Soc., 112 (1990) 8533.

    Article  Google Scholar 

  37. Sadowski, J. and Gasteiger J., Chem. Rev., 93 (1993) 2567. http://www2.chemie.uni-erlangen.de/software/corina/ index.html

    Article  Google Scholar 

  38. Harrison, R.W., J. Math. Chem., 26 (1999) 125.

    Article  Google Scholar 

  39. Aguilera, P.A., Frenich, A.G., Torres, J.A., Castro, H., Vidal, J.L.M. and Canton M., Water Res., 35 (2001) 4053.

    Article  PubMed  Google Scholar 

  40. Brodnjak-Voncina, D., Dobcnik, D., Novic, M. and Zupan, J., Anal. Chim. Acta, 462 (2002) 87.

    Article  Google Scholar 

  41. Anzali, S., Mederski, W.W.K.R., Osswald, M. and Dorsch, D., Bioorg. Med. Chem. Lett., 8 (1998) 11.

    Article  PubMed  Google Scholar 

  42. Simon, V., Gasteiger, J. and Zupan, J., J. Am. Chem. Soc., 115 (1993) 9148.

    Article  Google Scholar 

  43. Terfloth, L. and Gasteiger, J., Screening-Trends Drug Discov., 2 (2001) 49. http://www2.chemie.uni-erlangen.de/software/ kmap/ and http://www.mol-net.de

    Google Scholar 

  44. SPSS v. 10.0, SPSS Inc., Chicago, IL. http://www.spss.com

  45. SNNS: Stuttgart Neural Network Simulator, Version 4.2, developed at University of Stuttgart, maintained at University of Tübingen, 1995. http://www-ra.informatik.unituebingen.de/SNNS/

  46. Tetko, I.V., Livingstone, D.J. and Luik, A.I., J. Chem. Inf. Comput. Sci., 35 (1995) 826.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, A., Gasteiger, J., Krug, M. et al. Linear and nonlinear functions on modeling of aqueous solubility of organic compounds by two structure representation methods. J Comput Aided Mol Des 18, 75–87 (2004). https://doi.org/10.1023/B:jcam.0000030031.81235.05

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:jcam.0000030031.81235.05

Navigation