Skip to main content
Log in

A Novel Two T-DNA Binary Vector Allows Efficient Generation of Marker-free Transgenic Plants in Three Elite Cultivars of Rice (Oryza sativa L.)

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

A pilot binary vector was constructed to assess the potential of the 2 T-DNA system for generating selectable marker-free progeny plants in three elite rice cultivars (ZhongZuo321, Ariete and Khao Dawk Mali 105) known to exhibit contrasting amenabilities to transformation. The first T-DNA of the vector, delimited by Agrobacterium tumefaciens borders, contains the hygromycin phosphotransferase (hpt) selectable gene and the green fluorescent protein (gfp) reporter gene while the second T-DNA, delimited by Agrobacterium rhizogenes borders, bears the phosphinothricin acetyl transferase (bar) gene, featuring the gene of interest. 82–90% of the hygromycin-resistant primary transformants exhibited tolerance to ammonium glufosinate mediated by the bar gene suggesting very high co-transformation frequency in the three cultivars. All of the regenerated plants were analyzed by Southern blot which confirmed co-integration of the T-DNAs at frequencies consistent with those of co-expression and allowed determination of copy number for each gene as well as detection of two different vector backbone fragments extending between the two T-DNAs. Hygromycin susceptible, ammonium glufosinate tolerant phenotypes represented 14.4, 17.4 and 14.3% of the plants in T1 progenies of ZZ321, Ariete and KDML105 primary transformants, respectively. We developed a statistical model for deducing from the observed copy number of each T-DNA in T0 plants and phenotypic segregations in T1 progenies the most likely constitution and linkage of the T-DNA integration locus. Statistical analysis identified in 40 out of 42 lines a most likely linkage configuration theoretically allowing genetic separation of the two T-DNA types and out segregation of the T-DNA bearing the bar gene. Overall, though improvements of the technology would be beneficial, the 2 T-DNA system appeared to be a useful approach to generate selectable marker-free rice plants with a consistent frequency among cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bouchez D and Tourneur J (1991) Organization of the agropine synthesis region of the T-DNA of the Ri plasmid from Agrobacterium rhizogenes. Plasmid 25: 27–39.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Annal Biochem 72: 248–254.

    Article  CAS  Google Scholar 

  • Chen L, Zhang S, Beachy RN and Fauquet CM (1998) A protocol for consistent, large scale production of fertile transgenic rice plants. Plant Cell Rep 18: 25–31.

    Google Scholar 

  • Christensen A and Quail PH (1996) Ubiquitin promoter-based vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5: 213–218.

    Article  CAS  PubMed  Google Scholar 

  • Corneille S, Lutz K, Svab Z and Maliga P (2001) Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox-site-specific recombination system. Plant J 27: 171–178.

    Article  CAS  PubMed  Google Scholar 

  • Cotsaftis O, Sallaud C, Breitler JC, Meynard D, Greco R, Pereira A, et al. (2002) Transposon-mediated generation of marker free rice plants containing a Bt endotoxin gene conferring insect resistance. Mol Breeding 10: 165–180.

    Article  CAS  Google Scholar 

  • Dale EC and Ow DW (1994) Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad USA 88: 10558–10562.

    Google Scholar 

  • Daley M, Knauf VC, Summerfelt KR and Turner JC (1998) Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep 17: 489–496.

    Article  CAS  Google Scholar 

  • De Block M and Debrouwer D (1991) Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet 82: 257–263.

    CAS  Google Scholar 

  • De Framond AJ, Back EW, Chilton WS, Kayes L and Chilton M-D (1986) Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet. 202: 125–131.

    CAS  Google Scholar 

  • De Neve M, De Buck S, Jacobs A, Van Montagu M and Depicker A (1997) T-DNA integration patterns in co-transformed plant cells suggest that T-DNA repeats originate from co-integration of separate T-DNAs. Plant J 11: 15–29.

    CAS  PubMed  Google Scholar 

  • De Pater BS van der Mark F Rueb S Katagiri F Chua NH Schilperoort RA, et al. (1992) The promoter of the rice gos2 is active in various different monocot tissues and binds rice nuclear factor ASF-1. Plant J 2: 837–844.

    Article  CAS  PubMed  Google Scholar 

  • De Vetten N, Wolters A-M, Raemakers K, van der Meer I, Stege R, Heeres E, et al. (2003) A transformation method for obtaining marker-free plants of a cross-pollinating and vegetatively propagated crop. Nat Biotech 21: 439–442.

    Article  CAS  Google Scholar 

  • Ebinuma H, Sugita K, Matsunage E, Endo S, Yamada K and Komamine A (2001) Systems for the removal of a selection marker and their combination with a positive marker. Plant Cell Rep 20: 383–392.

    CAS  Google Scholar 

  • Feller W (1968) An Introduction to Probability Theory and Its Applications. New York, John Wiley & Sons.

    Google Scholar 

  • Gilbertson L, Ekena J, House I, Huang S, Krieger E, Luethy M, et al. (2003) Novel T-DNA vector designs to facilitate the production of transgenic marker genes and vector backbone. In: 7th International Congress of Plant Molecular Biology, 23–28 June, Barcelona, Spain, 438 p.

  • Gleave AP, Mitra DS, Mudge SR and Morris BA (1999) Selectable marker-free transgenic plants without sexual crossing: transient expression of cre recombinase and use of a conditional lethal dominant gene. Plant Mol Biol 40: 223–235.

    Article  CAS  PubMed  Google Scholar 

  • Goldsbrough AP, Lastrella CN and Yoder JI (1993) Transposition mediated re-positioning and subsequent elimination of marker gene from transgenic tomato. Biotechnology 11: 1286–1292.

    CAS  Google Scholar 

  • Gordon-Kamm WJ, Spencer TM, Mangano ML, Adams TR, Daines RJ, Start WG et al. (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603–618.

    Article  CAS  PubMed  Google Scholar 

  • Hansen G and Wright MS (1999) Recent advances in the transformation of plants. Trends Plants Sci 4: 226–231.

    Google Scholar 

  • Hare PD and Chua N-H (2002) Excision of selectable marker genes from transgenic plants. Nat Biotech 20: 575–580.

    Article  CAS  Google Scholar 

  • Heim R, Cubitt AB and Tsien RY (1995) Improved green fluoresence. Nature 373: 663–664.

    Article  CAS  PubMed  Google Scholar 

  • Hohn B, Levy AA and Puchta H (2001) Elimination of selection markers from transgenics plants. Curr Opin Biotech 12: 139–143.

    CAS  PubMed  Google Scholar 

  • Hoisington D (1992) Laboratory Protocols. CIMMYT, Mexico DF.

    Google Scholar 

  • Hood EE, Gelvin SB, Melchers LS and Hoekema A (1993) New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res 2: 208–218.

    Article  CAS  Google Scholar 

  • Horsch RB and Klee HJ (1986) Rapid assay of foreign gene expression in leaf discs transformed by Agrobacterium tumefaciens: role of T-DNAs borders in the transfer process. Proc Natl Acad Sci USA 83: 4428–4432.

    CAS  Google Scholar 

  • Kim SR, Lee J, Jun SH, Park S, Kang HG, Kwon S et al. (2003) Transgene structures in T-DNA-inserted rice plants. Plant Mol Biol 52: 761–73.

    CAS  PubMed  Google Scholar 

  • Komari T, Hiei Y, Saito Y, Murai N and Kumashiro T (1996) Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J 10: 165–174.

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Zhou X, Gong Z and Upadhyaya N (2001) Generation of selectable marker-free transgenic rice using a double rigth-border. Aust J Plant Physiol 28: 241–248.

    CAS  Google Scholar 

  • Matsuoka M, Kano-Murakami Y, Tanaka Y, Ozeki Y and Yamamoto N (1988) Classification and nucleotide sequence of cDNA encoding the small subunit of ribulose-1,5-biphosphate carboxylase from rice. Plant Cell Physiol 29: 1015–1022.

    CAS  Google Scholar 

  • Matthews P, Wang MB, Waterhouse P, Thornton S, Fieg S, Gubler F et al. (2001) Marker gene elimination from transgenic barley, using co-transformation with adjacent ‘twin T-DNAs’ on a standard Agrobacterium transformation vector. Mol Breeding 7: 195–202.

    Article  CAS  Google Scholar 

  • McCormac AC, Fowler MR, Chen DF and Elliott MC (2001) Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs, the effect of T-DNA size and implications for genetic separation. Transgenic Res 10: 143–155.

    Article  CAS  PubMed  Google Scholar 

  • McKnight TD, Lillis MT and Simpson RB (1987) Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol 8: 439–445.

    Article  CAS  Google Scholar 

  • Miller M, Tagliani L, Wang N, Berka B, Bidney D and Zhao ZY (2002) High efficiency transgene segregation in co-transformed maize plants using an Agrobacterium tumefaciens 2 T-DNA binary system. Transgenic Res 11: 381–396.

    Article  CAS  PubMed  Google Scholar 

  • Poirier Y, Ventre G and Nawrath C (2000) High-frequency linkage of co-expression T-DNA in transgenic Arabidopsis thaliana transformed by vacuum-infiltration of Agrobacterium tumefaciens. Theor Appl Genet 100: 487–493.

    Article  CAS  Google Scholar 

  • Puchta H (2000) Removing selectable marker genes: taking the shortcut. Trends Plant Sci 5: 273–274.

    Article  CAS  PubMed  Google Scholar 

  • Sallaud C, Meynard D, van Boxtel J, Gay C, Bés M, Brizard J-P, et al. (2003) Highly efficient production and characterization of T-DNA plants for rice (Oryza sativa L.) functional genomics. Theor Appl Genet 106: 1396–1408.

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF and Maniatis T (1989) Molecular Cloning: A Laboratory Manual. 2nd édn, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.

    Google Scholar 

  • Speulman E, Metz PL, Van Arkel G, Lintel Hekkert BT, Stiekema WJ and Pereira A (1999) A two-component enhancer-inhibitor transposon mutagenesis system for functional analysis of the Arabidopsis genome. Plant Cell 11: 1853–1866.

    Article  CAS  PubMed  Google Scholar 

  • Sugita K, Matsunaga E and Ebinuma H (1999) Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep 18: 941–947.

    Article  CAS  Google Scholar 

  • Vain P, Afolabi AS, Worland B and Snape JW (2003) Transgene behaviour in populations of rice plants transformed using a new dual binary vector system: pGreen/pSoup. Theor Appl Genet 107: 210–217.

    Article  CAS  PubMed  Google Scholar 

  • Vaucheret H, Beclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, et al. (1998) Transgene-induced gene silencing in plants. Plant J 16: 651–659.

    Article  CAS  PubMed  Google Scholar 

  • Wang MB, Upadhyaya NM, Brettell RI and Waterhouse PM (1997) Intron-mediated improvement of a selectable marker gene for plant transformation using Agrobacterium tumefaciens. J Genet Breed 51: 325–334.

    CAS  Google Scholar 

  • Xing A, Zhang Z, Sato S, Staswick P and Clemente T (2000) The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol 36: 456–463.

    CAS  Google Scholar 

  • Yin Z and Wang GL (2000) Evidence of multiple complex patterns of T-DNA integration into the rice genome. Theor Appl Genet 100: 461–470.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Christophe Breitler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Breitler, JC., Meynard, D., Van Boxtel, J. et al. A Novel Two T-DNA Binary Vector Allows Efficient Generation of Marker-free Transgenic Plants in Three Elite Cultivars of Rice (Oryza sativa L.). Transgenic Res 13, 271–287 (2004). https://doi.org/10.1023/B:TRAG.0000034626.22918.0a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TRAG.0000034626.22918.0a

Navigation