Skip to main content
Log in

Synthesis and Structures of the Novel Pyridoxal Oxime Derivatives

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Novel pyridoxal oxime derivatives were prepared and characterized by means of IR, 1H and 13C NMR spectroscopy. The crystal structures of the 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-1,2-dimethylpyridinium iodide 1 and 3-hydroxy-4-hydroxyiminomethyl-5-hydroxymethyl-1,2-dimethylpyridinium chloride monohydrate 2 were determined by X-ray analysis. The both compounds crystallize in the triclinic crystal system, space group P \(\overline 1 \). Crystal data: 1 a = 6.286(2) Å, b = 8.748(4) Å, c = 11.736(4) Å, α = 104.02(3)°, β = 94.70(3)°, γ = 107.44(6)°, V = 589.0(4) Å3, Z = 2, R = 0.0526; 2 a = 6.8980(5) Å, b = 8.6409(6) Å, c = 11.1777(6) Å, α = 111.138(5)°, β = 93.114(6)°, γ = 105.158(5)°, V = 591.57(7) Å3, Z = 2, R = 0.0492. The bond distances and angles in both structures agree very well. The main difference between these structures was observed in the orientation of the hydroxymethyl group with respect to the pyridinium ring. In the both structures intramolecular hydrogen bond forming six-membered ring were observed. The intermolecular O⋅⋅⋅sI hydrogen bonds in the crystal structure of the compound 1 form dimers. In the crystal structure of compound 2, the water molecules and chlorines build eight-membered rings, which are also connected to pyridinium cations by O⋅⋅⋅sCl and O⋅⋅⋅sO intermolecular hydrogen bonds forming a three-dimensional network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Kewitz, H.; Wilson, I. B.; Nachmansohn, D. Arch. Biochem. Biophys. 1956, 64, 456.

    Google Scholar 

  2. Hobbiger, F. Biochim. Biophys. Acta 1957, 25, 652.

    Google Scholar 

  3. Wilson, I. B.; Ginsburg, S.; Quan, C. Arch. Biochem. Biophys. 1958, 77, 286.

    Google Scholar 

  4. Lüttringhaus, A.; Hagendorn, I. Arzneim. Forsch. 1964, 14, 1.

    Google Scholar 

  5. Erdmann, W. D. Arzneim. Forsch. 1965, 15, 135.

    Google Scholar 

  6. Poziomek, E. J.; Hackley, B. E.; Steinberg, G. M. J. Org. Chem. 1958, 23, 714.

    Google Scholar 

  7. Hobbiger, F.; Pitman, M.; Sadler, P. W. Biochem. J. 1960, 75, 363.

    Google Scholar 

  8. Schoene, K.; Wulf, R. Arzneim. Forsch. 1972, 22, 1802.

    Google Scholar 

  9. Maksimović, M.; Bošković, B.; Radović, B.; Tadić, Lj.; Deljac, V.; Binenfeld, Z. Acta Pharm. Jugosl. 1980, 30, 151.

    Google Scholar 

  10. Worek, F.; Widmann, R.; Knopff, O.; Szinicz, L. Arch. Toxicol. 1998, 72, 237.

    Google Scholar 

  11. Kassa, J.; Cabal, J. Human Exp. Toxicol. 1999, 18, 560.

    Google Scholar 

  12. Kassa, J.; Cabal, J. Toxicology 1999, 132, 111.

    Google Scholar 

  13. Wong, L.; Radic, Z.; Brüggemann, R. J.; Hosea, N.; Berman, H. A.; Taylor, P. Biochemistry 2000, 39, 5750.

    Google Scholar 

  14. Khan, S.; Hemalaltha, R.; Jeyaseelan, L.; Oommen, A.; Zachariah, A. Human Exp. Toxicol. 2001, 20, 169.

    Google Scholar 

  15. Eddleston, M.; Szinicz, L.; Eyer, P.; Buckley, N. QJM: Monthly J. Assoc. Physicians 2002, 95, 275.

    Google Scholar 

  16. Milatović, D.; Vorkapić-Furač, J.; škrinjarićšpoljar, M.; Reiner, E. Acta Pharm. Jugosl. 1989, 39, 281.

    Google Scholar 

  17. Schöne, K. Dissertation, Fakultät für Chemie und Pharmazie, Albert-Ludwigs Universität, Freiburg im Breisgau, Germany, 1967.

    Google Scholar 

  18. Viscontini, M.; Ebnöther, C.; Karrer, P. Helv. Chim Acta 1951, 34, 1834.

    Google Scholar 

  19. Stoe & Cie, STADI4, Diffractometer Control Program, Darmstadt, Germany, 1995.

  20. Stoe & Cie, X-RED, Diffractometer Reduction Program, Darmstadt, Germany, 1995.

  21. North, A. C. T.; Phillips, D. C.; Mathews, F. S. Acta Crystallogr. 1968, A24, 351.

    Google Scholar 

  22. Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures, University of Göttingen, Germany, 1997.

    Google Scholar 

  23. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crys-tal Structures, University of Göttingen, Germany, 1997.

    Google Scholar 

  24. Nardelli, M. J. Appl. Crystallogr. 1995, 28, 659.

    Google Scholar 

  25. Spek, A. L. PLATON98 for Windows, University of Utrecht, The Netherlands, 1998.

    Google Scholar 

  26. Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc. Perkin Trans. II 1987, p. S1.

  27. Allen, F. H.; Kennard, O. Chem. Des. Autom. News 1993, 8, 31.

    Google Scholar 

  28. Bustamante, C. D.; Staples, R. J. Z. Kristallogr. New Crystal Struct. 1999, 214, 141.

    Google Scholar 

  29. Van Havere, W.; Lenstra, A. T. H.; Geise, H. J.; Van den Berg, G. R.; Benschop, H. P. Acta Crystallogr. 1982, B38, 1635.

    Google Scholar 

  30. Vickovic, I.; Pavlić, L.; Mrvoš-Sermek, D.; Mesic, M. Z. Kristallogr. 1995, 210, 282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marijana Jukić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jukić, M., Hergold-Brundić, A., Cetina, M. et al. Synthesis and Structures of the Novel Pyridoxal Oxime Derivatives. Structural Chemistry 14, 597–604 (2003). https://doi.org/10.1023/B:STUC.0000007571.43266.b3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STUC.0000007571.43266.b3

Navigation