Skip to main content
Log in

Characterization of the targeting signal of dual-targeted pea glutathione reductase

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We investigated the dual targeting signal of pea glutathione reductase (GR) that had been previously shown to be capable of targeting the passenger protein phosphinothricin acetyl transferase to mitochondria and chloroplasts in vivo. We confirmed that GR was imported into mitochondria and chloroplasts in vitro. Rupture of the outer mitochondrial membrane after the import assay indicated that GR was imported into both the intermembrane space and the matrix. Changing positive and hydrophobic residues in the targeting signal we investigated if dual targeting of GR was due to an overlapping or separate signal. Overall single mutations had a greater effect on mitochondrial import compared to chloroplasts, especially those on positive residues. Precursors containing both positive and hydrophobic residue mutations (double mutants) indicated that there might be some redundancy in targeting information for chloroplastic import as double mutants had a greater effect than predicted from the single mutants. Fusion of the targeting signal to the green fluorescent protein (GFP) followed by transient transformation indicated that this signal was only capable of targeting this passenger protein to plastids. Additionally, fusion of the complete coding sequence of GR to GFP also resulted in an exclusive chloroplastic localization. Mutations in the targeting signal that reduced import into plastids in vitro also displayed altered patterns of GFP localizations in vivo. These results indicate that some residues in the signal for dual localisation of GR play a role in both mitochondrial and chloroplastic import, and thus the signal is overlapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T. and Kohda, D. 2000. Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100: 551–560.

    Google Scholar 

  • Anderson, S. and Smith, S.M. 1986. Synthesis of the small subunit of ribulosebisphosphate carboxylase from genes cloned into plasmids containing the SP6 promoter. Biochem. J. 240.

  • Arnon, I. 1949. Copper enzymes in isolated chloroplasts: polyphenoloxidase in Beta vulgaris. Plant Physiol. 24: 1–15.

    Google Scholar 

  • Babiychuk, E., Muller, F., Eubel, H., Braun, H.P., Frentzen, M. and Kushnir, S. 2003. Arabidopsis phosphatidylglycerophosphate synthase 1 is essential for chloroplast differentiation, but is dispensable for mitochondrial function. Plant J. 33: 899–909.

    Google Scholar 

  • Bauer, J., Chen, K., Hiltbunner, A., Wehrli, E., Eugster, M., Schnell, D. and Kessler, F. 2000. The major protein import receptor of plastids is essential for chloroplast biogenesis. Nature 403: 203–207.

    Google Scholar 

  • Berthold, D.A., Andersson, M.E. and Nordlund, P. 2000. New insight into the structure and function of the alternative oxidase. Biochim. Biophys. Acta 1460: 241–254.

    Google Scholar 

  • Bruce, B.D. 2000. Chloroplast transit peptides: structure, function and evolution. Trends Cell. Biol. 10: 440–447.

    Google Scholar 

  • Bruce, B.D. 2001. The paradox of plastid transit peptides: conservation of function despite divergence in primary structure. Biochim. Biophys. Acta 1541: 2–21.

    Google Scholar 

  • Bruce, B.D., Perry, S., Froelich, J. and Keegstra, K. 1994. In vitro import of proteins into chloroplasts. In: S.B. Gelvin and R.A. Schilperoort (Eds.) Plant Molecular Biology Manual, 2nd edition, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. J1–J15.

    Google Scholar 

  • Chen, K., Chen, X. and Schnell, D.J. 2000. Initial binding of preproteins involving the Toc159 receptor can be bypassed during protein import into chloroplasts. Plant Physiol. 122: 813–822.

    Google Scholar 

  • Chew, O. and Whelan, J. 2003. Dual targeting ability of targeting signals is dependent on the nature of the mature protein. Funct. Plant Biol. 30: 805–812.

    Google Scholar 

  • Cleary, S.P., Tan, F.-U., Nakrieko, K.-A., Thompson, S.J., Mullineaux, P.M., Creissen, G.P., von Stedingt, E., Glaser, E., Smith, A.G. and Robinson, C. 2002. Isolated plant mitochondria import chloroplast precursor proteins in vitro with the same efficiency as chloroplast. J. Biol. Chem. 277: 5562–5569.

    Google Scholar 

  • Considine, M.J., Daley, D.O. and Whelan, J. 2001. The expression of alternative oxidase and uncoupling protein during fruit ripening in mango. Plant Physiol. 126: 1619–1629.

    Google Scholar 

  • Creissen, G., Edwards, E.A., Enard, C., Wellburn, A., Mullineaux, P. 1992. Molecular characterisation of glutathione reductase cDNAs from pea (Pisum sativum L.). Plant J. 2: 129–131.

    Google Scholar 

  • Creissen, G., Reynolds, H., Xue, Y. and Mullineaux, P. 1995. Simultaneous targeting of pea glutathione reductase and of a bacterial fusion protein to chloroplasts and mitochondria in transgenic tobacco. Plant J. 8: 167–175.

    Google Scholar 

  • Day, D.A., Neuberger, M. and Douce, R. 1985. Biochemical characterization of chlorophyll-free mitochondria from pea leaves. Aust. J. Plant Physiol. 12: 219–228.

    Google Scholar 

  • Dessi, P., Smith, M.K., Day, D.A. and Whelan, J. 1996. Characterization of the import pathway of the FAd subunit of mitochondrial ATP synthase into isolated plant mitochondria. Arch. Biochem. Biophys. 335: 358–368.

    Google Scholar 

  • Djajanegara, I., Finnegan, P.M., Mathieu, C., McCabe, T., Whelan, J. and Day, D.A. 2002. Regulation of alternative oxidase gene expression in soybean. Plant Mol. Biol. 50: 735–742.

    Google Scholar 

  • Douce, R. 1985. Mitochondria in Higher Plants: Structure, Function and Biogenesis. Academic Press, London.

    Google Scholar 

  • Duby, G., Oufattole and M., Boutry, M. 2001. Hydrophobic residues within the predicted N-terminal region amphiphilic α-helix of a plant mitochondrial targeting presequence play a major role in in vivo import. Plant J. 27: 539–549.

    Google Scholar 

  • Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. 2000. Predicting subcellular localisation of proteins based on their Nterminal amino acid sequence. J. Mol. Biol. 300: 1005–1016.

    Google Scholar 

  • Giege, P., Heazlewood, J.L., Roessner-Tunali, U., Millar, A.H., Fernie, A.R., Leaver, C.J. and Sweetlove, L.J. 2003. Enzymes of glycolysis are functionally associated with the mitochondrion in Arabidopsis cells. Plant Cell 15: 2140–2151.

    Google Scholar 

  • Giglione, C., Serero, A., Pierre, M., Boisson, B. and Meinnel, T. 2000. Identification of eukaryotic peptide deformylases re355 veals universality of N-terminal protein processing mechanisms. EMBO J. 19: 5916–5929.

    Google Scholar 

  • Glaser, E., Knorpp, C., Hugosson, M. and von Stedingk, E. 1995. Macromolecular movement into mitochondria. Meth. Cell. Biol. 50: 269–281.

    Google Scholar 

  • Glaser, E., Sjoling, S., Tanudji, M. and Whelan, J. 1998. Mitochondrial protein import in plants. Plant Mol. Biol. 38: 311–338.

    Google Scholar 

  • Goggin, D.E., Lipscombe, R., Fedorova, E., Millar, A.H., Mann, A., Atkins, C.A. and Smith, P.M. 2003. Dual intracellular localization and targeting of aminoimidazole ribonucleotide synthetase in cowpea. Plant Physiol. 131: 1033–1041.

    Google Scholar 

  • Hanson, M.R. and Kohler, R.H. 2001. GFP imaging: methodology and application to investigate cellular compartmentation in plants. J. Exp. Bot. 52: 529–539.

    Google Scholar 

  • Hartl, F.U., Pfanner, N., Nicholson, D.W. and Neupert, W. 1989. Mitochondrial protein import. Biochim. Biophys. Acta 988: 1–45.

    Google Scholar 

  • Haseloff, J., Siemering, K.R., Prasher, D.C. and Hodge, S. 1997.Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Google Scholar 

  • Hedtke, B., Borner, T. and Weihe, A. 2000. One RNA polymerase serving two genomes. EMBO Rep. 1: 435–440.

    Google Scholar 

  • Iturbe-Ormaetxe, I., Matamoros, M.A., Rubio, M.C., Dalton, D.A. and Becana, M. 2001. The antioxidants of legume nodule mitochondria. Mol Plant-Microbe Interact. 14: 1189–1196.

    Google Scholar 

  • Keegstra, K. and Cline, K. 1999. Protein import and routing systems of chloroplasts. Plant Cell 11: 557–570.

    Google Scholar 

  • Kubo, N., Arimura, S., Tsutsumi, N., Hirai, A. and Kadowaki, K. 2003. Involvement of N-terminal region in mitochondrial targeting of rice RPS10 and RPS14 proteins. Plant Sci. 164: 1047–1055.

    Google Scholar 

  • Lee, K.H., Kim, S.J., Lee, Y.J., Jin, J.B. and Hwang, I. 2003. The m domain of at Toc159 plays an essential role in the import of proteins into chloroplasts and chloroplast biogenesis. J. Biol. Chem. 000: 000–000.

    Google Scholar 

  • Lisenbee, C.S., Karnik, S.K. and Trelease, R.N. 2003. Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4: 491–501.

    Google Scholar 

  • Lister, R., Chew, O., Rudhe, C., Lee, M.-N. and Whelan, J. 2001. Arabidopsis thaliana ferrochelatase-I and-II are not imported into Arabodopsis mitochondria. FEBS Lett. 506: 291–295.

    Google Scholar 

  • Lister, R., Mowday, B., Whelan, J. and Millar, A.H. 2002. Zincdependent intermembrane space proteins stimulate import of carrier proteins into plant mitochondria. Plant J. 30: 555–566.

    Google Scholar 

  • Macasev, D., Newbigin, E., Whelan, J. and Lithgow, T. 2000. How do plant mitochondria avoid importing chloroplast proteins? Components of the import apparatus Tom20 and Tom22 from Arabidopsis differ from their fungal counterparts. Plant Physiol. 123: 811–816.

    Google Scholar 

  • Martin, W. and Herrmann, R.G. 1998. Gene transfer from organelles to the nucleus: how much, what happens, and why? Plant Physiol. 118: 9–17.

    Google Scholar 

  • May, T. and Soll, J. 2000. 14-3-3 proteins form a guidance complex with chloroplast precursor proteins in plants. Plant Cell 12: 53–63.

    Google Scholar 

  • Murcha, M.W., Lister, R., Ho, A.Y. and Whelan, J. 2003. Identification, expression, and import of components 17 and 23 of the inner mitochondrial membrane translocase from Arabidopsis. Plant Physiol. 131: 1737–1747.

    Google Scholar 

  • Muto, T., Obita, T., Abe, Y., Shodai, T., Endo, T. and Kohda, D. 2001. NMR identification of the Tom20 binding segment in mitochondrial presequences. J. Mol. Biol. 306: 137–143.

    Google Scholar 

  • Nakamura, T., Yamaguchi, Y. and Sano, H. 2000. Plant mercaptosulfurtransferases: molecular cloning, subcellular localization and enzymatic activities. Eur. J. Biochem. 267: 5621–5630.

    Google Scholar 

  • Neuberger, M., Journet, E., Bligny, R., Carde, J. and Douce, R. 1982. Purification of plant mitochondria by isopycnic centrifugation in density gradients of percoll. Arch. Biochem. Biophys. 217: 312–323.

    Google Scholar 

  • Palmer, J.D. 1997. Organelle genomes: going, going, gone. Science 275: 790–791.

    Google Scholar 

  • Peeters, N. and Small, I. 2001. Dual targeting to mitochondria and chloroplasts. Biochim. Biophys. Acta 1541: 54–63.

    Google Scholar 

  • Peeters, N.M., Chapron, A., Giritch, A., Grandjean, O., Lancelin, D., Lhomme, T., Vivrel, A. and Small, I. 2000. Duplication and quadruplication of Arabidopsis thaliana cysteinyl-and asparaginyl-tRNA synthetase genes of organellar origin. J. Mol. Evol. 50: 413–423.

    Google Scholar 

  • Pfanner, N., Douglas, M.G., Endo, T., Hoogenraad, N.J., Jensen, R.E., Meijer, M., Neupert, W., Schatz, G., Schmitz, U.K. and Shore, G.C. 1996. Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends Biochem. Sci. 21: 51–52.

    Google Scholar 

  • Pilon, M., Wienk, H., Sips, W., de Swaaf, M., Talboom, I., van 't Hof, R., d e Korte-Kool, G., Demel, R., Weisbeek, P.J. and de Kruijff, B. 1995. Functional domains of the ferrodoxin transit sequence involved in chloroplast import. J. Biol. Chem. 270: 3882–3893.

    Google Scholar 

  • Rehling, P., Wiedemann, N., Pfanner, N. and Truscott, K.N. 2001. The mitochondrial import machinery for preproteins. Crit. Rev. Biochem. Mol. Biol. 36: 291–336.

    Google Scholar 

  • Rensink, W.A., Pilon, M. and Weisbeek, P. 1998. Domains of a transit sequence required for in vivo import in Arabidopsis chloroplasts. Plant Physiol. 118: 691–699.

    Google Scholar 

  • Rensink, W.A., Schnell, D.J. and Weisbeek, P.J. 2000. The transit sequence of ferrodoxin contains different domains for translocation across the outer and inner membrane of the chloroplast envelope. J. Biol. Chem. 275: 10265–10271.

    Google Scholar 

  • Roise, D. 1993. The amphipathic helix in mitochondrial targeting sequences. In: R. Epand (Ed.) The Amphipathic Helix, CRC Press, London, pp. 000–000 (AUTHOR: PLEASE FILL IN).

    Google Scholar 

  • Rudhe, C., Chew, O., Whelan, J. and Glaser, E. 2002a. A novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant J. 30: 213–320.

    Google Scholar 

  • Rudhe, C., Clifton, R., Whelan, J. and Glaser, E. 2002b. N-terminal domain of the dual-targeted pea glutathione reductase signal peptide controls organellar targeting efficiency. J. Mol. Biol. 324: 577–585.

    Google Scholar 

  • Schatz, G. 1997. Just follow the acid chain. Nature 388: 121–122.

    Google Scholar 

  • Schleiff, E. and Soll, J. 2000. Travelling of proteins through membranes: translocation into chloroplasts. Planta 211: 449–456.

    Google Scholar 

  • Silva Filho, M.d.C., Chaumont, F., Leterme, S., Boutry, M. 1996. Mitochondrial and chloroplast targeting sequences in tandem modify protein import specificity in plant organelles. Plant Mol. Biol. 30: 769–780.

    Google Scholar 

  • Sjoling, S. and Glaser, E. 1998. Mitochondrial targeting peptides in plants. Trends Plant Sci. 3: 136–140.

    Google Scholar 

  • Small, I., Wintz, H., Akashi, K. and Mireau, H. 1998. Two birds with one stone: genes that encode products targeted to two or more compartments. Plant Mol. Biol. 38: 265–277.

    Google Scholar 

  • Smith, M.K., Day, D.A. and Whelan, J. 1994. Isolation of a novel soybean gene encoding a mitochondrial ATP synthase subunit. Arch. Biochem. Biophys. 313: 235–240.

    Google Scholar 

  • Sohrt, K. and Soll, J. 2000. Toc64, a new component of teh protein translocation of chloroplasts. J. Cell Biol. 148: 1213–1221.

    Google Scholar 

  • Soll, J. and Tien, R. 1998. Protein translocation into and across the chloroplastic envelope membranes. Plant Mol. Biol. 38: 191–207.

    Google Scholar 

  • Tanudji, M., Dessi, P., Murcha, M. and Whelan, J. 2001. Protein import into plant mitochondria: precursor proteins differ in ATP and membrane potential requirements. Plant Mol. Biol. 45: 317–325.

    Google Scholar 

  • Tanudji, M., Sjoling, S., Glaser, E. and Whelan, J. 1999. Signals required for the import and processing of the alternative oxidase into mitochondria. J. Biol. Chem. 274: 1286–1293.

    Google Scholar 

  • Taylor, N.L., Rudhe, C., Hulett, J.M., Lithgow, T., Glaser, E., Day, D.A., Millar, A.H. and Whelan, J. 2003a. Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Lett. 547: 125–130.

    Google Scholar 

  • Taylor, S.W., Fahy, E., Zhang, B., Glenn, G.M., Warnock, D.E., Wiley, S., Murphy, A.N., Gaucher, S.P., Capaldi, R.A., Gibson, B.W. and Ghosh, S.S. 2003b. Characterization of the human heart mitochondrial proteome. Nature Biotechnol. 21: 281–286.

    Google Scholar 

  • von Heijne, G., Steppuhn, J. and Herrmann, R.G. 1989. Domain structure of mitochondrial and chloroplast targeting peptides. Eur. J. Biochem. 180: 535–545.

    Google Scholar 

  • Waegemann, K. and Soll, J.: Characterization and isolation of the chloroplast import machinery. Meth. Cell. Biol. 50: 255–267.

  • Wang, Y. and Weiner, H. 1994. Evaluation of electrostatic and hydrophobic effects on the interaction of mitochondrial signal sequences with phospholipid bilayers. Biochemistry 33: 12860–12867.

    Google Scholar 

  • Werhahn, W., Jansch, L. and Braun, H.-P. 2003. identification of novel subunits of the TOM complex from Arabidopsis thaliana. Plant Physiol. Biochem. 41: 407–416.

    Google Scholar 

  • Whelan, J., Tanudji, M.R., Smith, M.K. and Day, D.A. 1996. Evidence for a link between translocation and processing during protein import into soybean mitochondria. Biochim. Biophys. Acta 1312: 48–54.

    Google Scholar 

  • Yu, T.S. and Li, H. 2001. Chloroplast protein translocon components atToc159 and atToc33 are not essential for chloroplast biogenesis in guard cells and root cells. Plant Physiol. 127: 90–96.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chew, O., Rudhe, C., Glaser, E. et al. Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 53, 341–356 (2003). https://doi.org/10.1023/B:PLAN.0000006939.87660.4f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000006939.87660.4f

Navigation