Skip to main content
Log in

Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Association of mitochondrial population to a mitochondrial reticulum is typical of many types of the healthy cells. This allows the cell to organize a united intracellular power-transmitting system. However, such an association can create some difficulties for the cell when a part of the reticulum is damaged or when mitochondria should migrate from one cell region to another. It is shown that in these cases decomposition of extended mitochondria to small roundish organelles takes place (the thread-grain transition). As an intermediate step of this process, formation of bead-like mitochondria occurs when several swollen parts of the mitochondrial filament are interconnected with thin thread-like mitochondrial structures. A hypothesis is put forward that the thread-grain transition is used as a mechanism to isolate a damaged part of the mitochondrial system from its intact parts. If the injury is not repaired, spherical mitochondrion originated from the damaged part of the reticulum is assumed to convert to a small ultracondensed and presumably dead mitochondrion (this process is called ‘mitoptosis’). Then the dead mitochondrion is engulfed by an autophagosome. Sometimes, an ultracondensed mitoplast co-exists with a normal mitoplast, both of them being surrounded by a common outer mitochondrial membrane. During apoptosis, massive thread-grain transition is observed which, according to Youle et al. (S. Frank et al., Dev Cell 1: 515, 2002), is mediated by a dynamin-related protein and represents an obligatory step of the mitochondria-mediated apoptosis. We found that there is a lag phase between addition of an apoptogenic agent and the thread-grain transition. When started, the transition occurs very fast. It is also found that this event precedes complete de-energization of mitochondria and cytochrome c release to cytosol. When formed, small mitochondria migrate to (and in certain rare cases even into) the nucleus. It is suggested that small mitochondria may serve as a transportable form of organelles (‘cargo boats’ transporting some apoptotic proteins to their nuclear targets).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skulachev VP: Energy Accumulation Processes in the Cell (in Russian). Nauka, Moscow, 1969

    Google Scholar 

  2. Skulachev VP: Energy transformation in the respiratory chain. Curr Topics Bioenerg 4: 127–190, 1971

    Google Scholar 

  3. Skulachev VP: Membrane Bioenergetics. Springer-Verlag, Berlin, 1988

    Google Scholar 

  4. Bereiter-Hahn J: Behaviour of mitochondria in the living cell. Int Rev Cytol 122: 1–63, 1990

    PubMed  Google Scholar 

  5. Skulachev VP: Power transmission along biological membranes. J Membr Biol 114: 97–112, 1990

    Article  PubMed  Google Scholar 

  6. Ogata T, Yamasaki Y: Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. Anat Rec 248: 214–223, 1997

    Article  PubMed  Google Scholar 

  7. Skulachev VP: Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 26: 23–29, 2001

    Article  PubMed  Google Scholar 

  8. Amchenkova AA, Bakeeva LE, Drachev VA, Zorov DB, Skulachev VP, Chentsov YuS: Mitochondrial electric cable (in Russian). Vestn Mosk Univ Ser Biol 3: 3–15, 1986

    Google Scholar 

  9. Drachev VA, Zorov DB: Mitochondrion as electric cable. Experimental verification of the hypothesis (in Russian). Dokl Akad Nauk SSSR 287: 1237–1238, 1986

    PubMed  Google Scholar 

  10. Amchenkova AA, Bakeeva LE, Chentsov YuS, Skulachev VP, Zorov DB: Coupling membranes as energy-transmitting cables. I. Filamentous mitochondria in fibroblasts and mitochondrial clusters in cardiomyocytes. J Cell Biol 107: 481–495, 1988

    Article  PubMed  Google Scholar 

  11. Zorov DB, Filburn ChR, Klotz L-O, Zweier JL, Sollott SJ: Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 192: 1001–1014, 2000

    Article  PubMed  Google Scholar 

  12. Skulachev VP: Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 397: 7–10, 1996

    Article  PubMed  Google Scholar 

  13. Zoratti M, Szabo I.: The mitochondrial permeability transition. Biochim Biophys Acta 1241: 139–176, 1995

    PubMed  Google Scholar 

  14. Shimizu S, Takada M, Umezawa K, Imoto M: Requirement of caspase-3(-like) protease-mediated hydrogen peroxide production for apoptosis induced by various anticancer drugs. J Biol Chem 273: 26900–26907, 1998

    Article  PubMed  Google Scholar 

  15. Johnson TM, Yu Z-X, Ferrans VJ, Lowenstein RA, Finkel T: Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848–11852, 1996

    Article  PubMed  Google Scholar 

  16. Goldkorn T, Balaban N, Shannon M, Chea V, Matsukuma K, Gilchrist D, Wang H, Chan C: H2O2 acts on cellular membrane to generate ceramide signalling and initiate apoptosis in tracheobronchial epithelial cell. J Cell Sci 111: 3209–3220, 1998

    PubMed  Google Scholar 

  17. Hiraoka W, Vazquez N, Nieves-Neira W, Chanock SJ, Pommier Y: Role of oxygen radicals generated by NADPH oxidase in apoptosis induced in human leukemia cells. J Clin Invest 102: 1961–1968, 1998

    PubMed  Google Scholar 

  18. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Droge W, Schmitz ML: Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB. Oncogene 18: 754–757, 1999

    Article  Google Scholar 

  19. Olejnicka BT, Dalen H, Brink UT: Minute oxidative stress is sufficient to induce apoptotic death of NIT-1 insulinoma cells. APMIS 107: 747–761, 1999

    PubMed  Google Scholar 

  20. Reznikov VK, Kolesnikova L, Pramanik A, Tan-No K, Gileva I, Yakovleva T, Rigler R, Terenius L, Bakalkin G: Clustering of apoptotic cells via bystander killing by peroxides. FASEB J 14: 1754–1764, 2000

    Article  PubMed  Google Scholar 

  21. Zorov DB, Kinnally KW, Tedesci H: Voltage activation of heart inner mitochondrial membrane channels. J Bioenerg Biomembr 24: 119–124, 1992

    Article  PubMed  Google Scholar 

  22. Skulachev VP: Lowering of intracellular O2 concentration as a special function of respiratory systems of cells. Biochemistry (Moscow) 59: 1433–1434, 1994

    Google Scholar 

  23. Skulachev VP: Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Quart Rev Biophys 29: 169–202, 1996

    Google Scholar 

  24. Skulachev VP: Programmed death phenomena: From organelle to organism. Ann NY Acad Sci 959: 214–237, 2002

    PubMed  Google Scholar 

  25. Skulachev VP: Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423: 275–280, 1998

    PubMed  Google Scholar 

  26. James TS, Terasaki F, Pavlovich ER, Vikhert AN: Apoptosis and pleomorphic micromitochondriosis in the sinus nodes surgically excised from five patients with the long QT syndrome. J Lab Clin Med 122: 309–323, 1993

    PubMed  Google Scholar 

  27. Zhuang J, Dinsdale D, Cohen GM: Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ 5: 953–962, 1998

    Article  PubMed  Google Scholar 

  28. Collier NC, Sheetz MP, Schlesinger MJ: Concomitant changes in mitochondria and intermediate filaments during heat shock and recovery embryo fibroblasts. J Cell Biochem 52: 297–307, 1993

    PubMed  Google Scholar 

  29. De Vos K, Goossens V, Boone E, Vercammen D, Vancompernolle K, Vandenabeele P, Haegeman G, Fiers W, Grooten J: The 55-kDa tumor necrosis factor receptor induces clustering of mitochondria through its membrane-proximal region. J Biol Chem 273: 9673–9680, 1998

    Article  PubMed  Google Scholar 

  30. De Vos K, Severin F, Van Herreweghe F, Goossens V, Hyman A, Grooten J: Tumor necrosis factor inhibits kinesin-mediated transport of mitochondria by hyperphosphorylation of kinesin light chain. J Cell Biol 149: 1207–1214, 2000

    Article  PubMed  Google Scholar 

  31. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B: An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA 72: 3666–3670, 1975

    PubMed  Google Scholar 

  32. a.Goldstein JC, Waterhouse NJ, Juin P, Evan GI, Green DR: The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2: 156–162, 2000

    PubMed  Google Scholar 

  33. Marchenko ND, Zaika A, Moll UM: Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signalling. J Biol Chem 275: 16202–16212, 2000

    Google Scholar 

  34. Skulachev VP: Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms. Mol Asp Med 20: 139–184, 1999

    Article  Google Scholar 

  35. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G: Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397: 441–446, 1999

    Article  Google Scholar 

  36. Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ: The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1: 515–525, 2002

    Article  Google Scholar 

  37. Desagher S, Martinou JC: Mitochondria as the central control point of apoptosis. Trends Cell Biol 10: 369–377, 2000

    Article  PubMed  Google Scholar 

  38. Smirnova E, Shurland DL, Kyazantsev SN, van der Bliek AM: A human dynamin-related protein controls the distribution of mitochondria. J Cell Biol 143: 351–358, 1998

    Article  PubMed  Google Scholar 

  39. Smirnova E, Griparic L, Shurland DL, van der Bliek AM: The dynamin-related Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 12: 2245–2256, 2002

    Google Scholar 

  40. van der Bliek AM: Functional diversity in the dynamin family. Trends Cell Biol 9: 96–102, 1999

    PubMed  Google Scholar 

  41. Labrousse AM, Zappaterra MD, Rube DA, van der Bliek AM: C. elegans dynamin-related protein DRP-1 controls severing of the mitochondrial outer membrane. Mol Cell 4: 815–826, 1999

    Article  PubMed  Google Scholar 

  42. Bleazard W, McCaffery JM, King EJ, Bale S, Mozdy A, Tieu Q, Nunnari J, Shaw JM: The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat Cell Biol 1: 298–304, 1999

    Article  PubMed  Google Scholar 

  43. Mozdy AD, McCaffery JM, Shaw JM: Dnm1p GTPase-mediated mitochondrial fission is a multi-step process requiring the novel membrane component Fis1p. J Cell Biol 151: 367–380, 2000

    Article  PubMed  Google Scholar 

  44. Otsuga D, Keegan BR, Brisch E, Thatcher JW, Hermann GJ, Bleazard W, Shaw JM: The dynamin-related GTPase, Dnm1p, controls mitochondrial morphology in yeast. J Cell Biol 143: 333–349, 1998

    Article  PubMed  Google Scholar 

  45. Sesaki H, Jensen RE: Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J Cell Biol 147: 699–706, 1999

    Article  PubMed  Google Scholar 

  46. Takei K, McPherson PS, Schmid SL, De Camilli P: Tubular membrane invaginations coated by dynamin rings are induced by GTP-gamma S in nerve terminals. Nature 374: 186–190, 1995

    Article  PubMed  Google Scholar 

  47. Sweitzer SM, Hinshaw JE: Dynamin undergoes a GTP-dependent conformational change causing vesiculation. Cell 93: 1021–1029, 1998

    Article  PubMed  Google Scholar 

  48. Stowell MH, Marks S, Wigge P, McMahon HT: Nucleotide-dependent conformational changes in dynamin: Evidence for a mechanochemical molecular spring. Nat Cell Biol 1: 27–32, 1999

    Article  PubMed  Google Scholar 

  49. Sever S, Muhlberg AB, Schmid SL: Impairment of dynamin's GAP domain stimulates receptor-mediated endocytosis. Nature 398: 481–486, 1999

    Article  PubMed  Google Scholar 

  50. a.Saprunova VB, Kazimirchuk SA, Tonshin AA, Bakeeva LE, Yaguzhinsky LS: Induction of apoptosis in rat myocardium under anoxic conditions. Biochemistry (Moscow) 67: 246–253, 2002

    Article  Google Scholar 

  51. Liu X, Naekyung C, Yang J, Jemmerson R, Wang X: Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86: 147–157, 1996

    Article  PubMed  Google Scholar 

  52. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275: 1129–1132, 1997

    Article  PubMed  Google Scholar 

  53. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136, 1997

    PubMed  Google Scholar 

  54. Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD: Cytochrome c activation of CPP32-like proteolysis plays a critical role in Xenopus cell-free apoptosis system. EMBO J 16: 4639–4649, 1997

    Article  PubMed  Google Scholar 

  55. Fletcher GC, Xue L, Passingham SK, Tolkovsky AM: Death commitment point is advanced by axotomy in sympathetic neurons. J Cell Biol 150: 741–754, 2000

    Article  PubMed  Google Scholar 

  56. Xue L, Fletcher GC, Tolkovsky AM: Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis. Curr Biol 11: 361–365, 2001

    Article  PubMed  Google Scholar 

  57. Shchepina LA, Pletjushkina OYu, Avetisyan AV, Bakeeva LE, Fetisova EK, Izyumov DS, Saprunova VB, Vyssokikh MYu, Chernyak BV, Skulachev VP: Oligomycin, inhibitor of the F0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene 21: 8149–8157, 2002

    Article  Google Scholar 

  58. Hoffman H, Grigg GW: An electron microscopic study of mitochondria formation. Exp Cell Res 15: 118–131, 1958

    Article  PubMed  Google Scholar 

  59. Mori H: Electron microscopic studies of the ascites tumor cells. Report 1. On the mitochondria within the nuclei of various tumor cells and regenerating liver cells of the newt. Fukushima J Med Sci 7: 21–32, 1960

    Google Scholar 

  60. Brandes D, Schonfield BH, Antom E: Nuclear mitochondria? Science 149: 1373–1374, 1965

    PubMed  Google Scholar 

  61. Klug H: On the occurrence of mitochondria in the cell nucleus. Naturwissenschaften 53: 339, 1966

    Article  PubMed  Google Scholar 

  62. Bloom GD: A nucleus with cytoplasmic features. J Cell Biol 35: 266–268, 1967

    Article  PubMed  Google Scholar 

  63. Oliva H, Valle A, Diaz Flores L, Rivas MC: Intranuclear mitochondria in Hodgkin's disease. Virchows Arch B Cell Pathol 12: 189–194, 1973

    PubMed  Google Scholar 

  64. Schumacher HR, Szekely IE, Patel SB, Fisher DR: Leukemic mitochondria. Am J Pathol 74: 71–92, 1974

    PubMed  Google Scholar 

  65. Jensen H, Engedal H, Selmer Satersdal T: Ultrastructure of mitochondria-containing nuclei in human myocardial cells. Virchows Arch B Cell Pathol 21: 1–12, 1976

    Google Scholar 

  66. Quaini F, Cigola E, Lagrasta C, Saccani G, Quaini E, Rossi C, Olivetti G, Anversa P: End-stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ Res 75: 1050–1063, 1994

    PubMed  Google Scholar 

  67. Tsyplenkova VG, Beskrovnova NN: The comparative morphological and morphometric characteristics of the myocardium in patients with a clinical diagnosis of hypertrophic cardiomyopathy (in Russian). Arkhiv Patol 55: 26–29, 1993

    Google Scholar 

  68. Takemura G, Takatsu Y, Sakaguchi H, Fujiwara H: Intranuclear mitochondria in human myocardial cells. Pathol Res Pract 193: 305–311, 1997

    PubMed  Google Scholar 

  69. Bakeeva LE, Skulachev VP, Sudarikova YuV, Tsyplenkova VG: Mitochondria enter the nucleus (one further problem in chronic alcoholism). Biochemistry (Moscow) 66: 1335–1341, 2001

    Article  Google Scholar 

  70. Kino M: Chronic effects of ethanol under partial inhibition of catalase activity in the rat heart: Light and electron microscopic observations. J Mol Cell Cardiol 13: 5–21, 1981

    Article  PubMed  Google Scholar 

  71. Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G: Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184: 1331–1341, 1996

    Article  PubMed  Google Scholar 

  72. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng H-Y, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga-Pflucker JC, Kroemer G, Penninger JM: Essential role of mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410: 549–554, 2001

    Article  PubMed  Google Scholar 

  73. Parrish J, Li L, Klotz K, Ledwich B, Wang X, Xue D: Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature 412: 90–94, 2001

    Article  PubMed  Google Scholar 

  74. Li L, Luo X, Wang X: Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95–99, 2001

    Article  PubMed  Google Scholar 

  75. Widlak P, Li LY, Wang X, Garrard WT: Action of recombinant human apoptotic endonuclease G on naked DNA and chromatin substrates: Cooperation with exonuclease and DNase I. J Biol Chem 276: 48404–48409, 2001

    PubMed  Google Scholar 

  76. Du C, Fang M, Li Y, Li L, Wang X: Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42, 2000

    Article  Google Scholar 

  77. Verhagen AM, Ekert PG, Pakusch M, Silke J, Connolly LM, Reid GE, Moritz RL, Simpson RJ, Vaux DL: Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102: 43–53, 2000

    Article  Google Scholar 

  78. Susin SA, Lorenzo HK, Zamzami N, Marzo I, Brenner C, Larochette N, Prevost M-C, Alzari PM, Kroemer G: Mitochondrial release of caspase-2 and-9 during the apoptotic process. J Exp Med 189: 381–394, 1999

    Article  PubMed  Google Scholar 

  79. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S: Presence of a pre-apoptotic complex of pro-caspase 3, Hsp60 and Hsp10 in the mitochondrial fraction of Jurkat cells. EMBO J 18, 2040–2048, 1999

    Article  PubMed  Google Scholar 

  80. Bottero V, Rossi F, Samson M, Mari M, Hofman P, Peyron J-F: Ikappa b-alpha, the NF-kappa B inhibitor subunit, interacts with ANT, the mitochondrial ATP/ADP translocator. J Biol Chem 276: 21317–21324, 2001

    Article  PubMed  Google Scholar 

  81. Severina II, Skulachev VP, Zorov DB: Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes. J Cell Biol 107: 497–501, 1988

    Article  PubMed  Google Scholar 

  82. Zhivotovsky B, Orrenius S, Brustugun OT, Deskeland SO: Injected cytochrome c induces apoptosis. Nature 391: 449–450, 1998

    Article  PubMed  Google Scholar 

  83. Shimizu S, Narita M, Tsujimoto Y: Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399: 483–487, 1999

    Article  PubMed  Google Scholar 

  84. Madesh M, Hajnoczky G: VDAC-dependent permeabilization of the outer mitochondrial membrane by superoxide induces rapid and massive cytochrome c release. J Cell Biol 155: 1003–1015, 2001

    Article  PubMed  Google Scholar 

  85. Ruiz-Vela M, Gonzalez de Buitrago G, Martinez AC: Nuclear Apaf-1 and cytochrome c redistribution following stress-induced apoptosis. FEBS Lett 517: 133–138, 2002

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skulachev, V.P., Bakeeva, L.E., Chernyak, B.V. et al. Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 256, 341–358 (2004). https://doi.org/10.1023/B:MCBI.0000009880.94044.49

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009880.94044.49

Navigation