Skip to main content
Log in

On the origin of intracellular compartmentation and organized metabolic systems

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The history of the development of the ideas and research of organized metabolic systems during last three decades is shortly reviewed. The cell cytoplasm is crowded with solutes, soluble macromolecules such as enzymes, nucleic acids, structural proteins and membranes. The high protein density within the large compartments of the cells predominantly determines the major characteristics of cellular environment such as viscosity, diffusion and inhomogeneity. The fact that the solvent viscosity of cytoplasm is not substantially different from the water is explained by intracellular structural heterogeneity: the intrinsic macromolecular density is relatively low within the interstitial voids in the cell because many soluble enzymes are apparently integral parts of the insoluble cytomatrix and are not distributed homogeneously. The molecular crowding and sieving restrict the mobility of very large solutes, binding severely restrict the mobility of smaller solutes. One of consequence of molecular crowding and hindered diffusion is the need to compartmentalize metabolic pathway to overcome diffusive barriers. Although the movement of small molecules is slowed down in the cytoplasm, the metabolism can successfully proceed and even be facilitated by metabolite channeling which directly transfers the intermediate from one enzyme to an adjacent enzyme without the need of free aqueous-phase diffusion. The enhanced probability for intermediates to be transfered from one active site to the other by sequential enzymes requires stable or transient interactions of the relevant enzymes, which associate physically in non-dissociable, static multienzyme complexes – metabolones, particles containing enzymes of a part or whole metabolic systems. Therefore, within the living cell the metabolism depends on the structural organization of enzymes forming microcompartments. Since cells contain many compartments and microenvironments, the measurement of the concentration of metabolites in whole cells or tissues gives an average cellular concentration and not that which is actually sensed by the active site of a specific enzyme. Thus, the microcompartmentation could provide a mechanism which can control metabolic pathways. Independently and in parallel to the developments described above, the ideas of compartmentation came into existence from the necessity to explain important physiological phenomena, in particular in heart research and in cardiac electrophysiology. These phenomena demonstrated the physiological importance of the biophysical and biochemical mechanisms described in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srere PA: Enzyme concentrations in tissues. Science 158: 936–937, 1967

    PubMed  Google Scholar 

  2. Fulton AB: How crowded is the cytoplasm? Cell 30: 345–347, 1982

    Article  PubMed  Google Scholar 

  3. Ellis RJ: Macromolecular crowding: Obvious but underappreciated. Trends Biochem Sci 26: 597–604, 2001

    Article  PubMed  Google Scholar 

  4. Scalettar BA, Abney JR, Hackenbrock CR: Dynamics, structure, and function are coupled in the mitochondrial matrix. Proc Natl Acad Sci USA 88: 8057–8061, 1991

    PubMed  Google Scholar 

  5. Minton AP, Wilf J: Effect of macromolecular crowding upon the structure and function of an enzyme: Glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20: 4821–4826, 1981

    Article  PubMed  Google Scholar 

  6. Porter KR, Beckerle M, McNiven M: The cytoplasmic matrix. Mod Cell Biol 2: 259, 1983

    Google Scholar 

  7. Gershon ND, Porter KR, Trus BL: The cytoplasmic matrix: Its volume and surface area and the diffusion of molecules through it. Proc Natl Acad Sci USA 82: 5030–5034, 1985

    PubMed  Google Scholar 

  8. Welch GR, Clegg JS: In: G.R. Welch, J.S. Clegg (eds). The Organization of Cell Metabolism. Plenum Press, New York, 1986, pp 57–74

    Google Scholar 

  9. Kao HP, Abney JR, Verkman AS: Determinants of the translational mobility of a small solute in cell cytoplasm. J Cell Biol 120: 175–184, 1993

    Article  PubMed  Google Scholar 

  10. Fushimi K, Verkman AS: Low viscosity in the aqueous domain of cell cytoplasm measured by picosecond polarization microfluorimetry. J Cell Biol 112: 719–725, 1991

    Article  PubMed  Google Scholar 

  11. Luby-Phelps K, Mujumdar S, Mujumdar R, Ernst L, Galbraith W, Waggoner A: A novel fluorescence ratiometric method confirms the low solvent viscosity of the cytoplasm. Biophys J 65: 236–242, 1993

    PubMed  Google Scholar 

  12. Luby-Phelps K, Lanni F, Taylor DL: The submicroscopic properties of cytoplasm as a determinant of cellular function. Annu Rev Biophys Chem 17: 369–396, 1988

    Article  Google Scholar 

  13. Mastro AM, Hurley DJ: In: G.R. Welch, J.S. Clegg (eds). The Organization of Cell Metabolism. Plenum Press, New York, 1986, pp 57–74

    Google Scholar 

  14. Swaminathan R, Hoang PC, Verkman AS: Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: Cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys J 72: 1900–1907, 1997

    PubMed  Google Scholar 

  15. Partikian A, et al.: Rapid diffusion of green fluorescent protein in the mitochondrial matrix. J Cell Biol 140: 821–829, 1998

    Article  PubMed  Google Scholar 

  16. Verkman AS: Solute and macromolecule diffusion in cellular aqueous compartments. Trend Biochem Sci 27: 27–33, 2002

    Article  PubMed  Google Scholar 

  17. Riggs AD, Bourgeois S, Cohn M: The Lac repressor-operator interaction. J Mol Biol 53: 401–417, 1970

    Article  PubMed  Google Scholar 

  18. Ovádi J: Cell Architecture and Metabolic Channeling. R.G. Landes, Springer-Verlag, Austin, New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest, 1995

    Google Scholar 

  19. Gaertner FH: Unique catalytic properties of enzyme clusters. Trends Biochem Sci 3: 63–65, 1978

    Article  Google Scholar 

  20. Srere PA: In: M.A. Meghlman, R.W. Hansen (eds). Energy Metabolism and the Regulation of Metabolic Processes in Mitochondria. Academic Press, New York, 1972, pp 79–91

    Google Scholar 

  21. Srere PA: The metabolon. Trends Biochem Sci 10: 109–110, 1985

    Article  Google Scholar 

  22. Ovádi J, Srere AP: Macromolecular compartmentation and channeling. Intern Rev Cytol 192: 255–280, 2000

    Google Scholar 

  23. Elcock AH, McCammon JA: Electrostatic channeling of substrates between enzyme active sites: Comparison of simulation and experiment. Biochemistry 36: 16049–16058, 1997

    Article  PubMed  Google Scholar 

  24. Ovádi J, Srere P: Metabolic consequences of enzyme interactions. Cell Biochem Function 14: 249–258, 1996

    Article  Google Scholar 

  25. Ovádi J, Orosz F: In: L. Agius, H.S.A. Sherratt (eds). Channelling in Intermediary Metabolism. Portland Press, London, 1996, pp 237–268

    Google Scholar 

  26. Mommaerts WFHM: Energetics of muscular contraction. Physiol Rev 49: 427–508, 1969

    Google Scholar 

  27. Davies DF, Davies RE: Breakdown of adenosine triphosphate during a single contraction of working muscle. Biochem Biophys Res Commun 8: 361–366, 1962

    PubMed  Google Scholar 

  28. Veech RL, Lawson JWR, Cornell NW, Krebs HA: Cytosolic phosphorylation potential. J Biol Chem 254: 6538–6547, 1979

    PubMed  Google Scholar 

  29. Kammermeier H, Schmidt, Jungling E: Free energy change of ATP hydrolysis: A causal factor of early hypoxic failure of the myocardium? J Mol Cell Cardiol 14: 267–277, 1982

    PubMed  Google Scholar 

  30. Gudbjarnason S, Mathes P, Raven KG: Functional compartmentation of ATP and creatine phosphate in heart muscle. J Mol Cell Cardiol 1: 325–339, 1970

    Article  PubMed  Google Scholar 

  31. Neely JR, Rovetto MJ, Whitmer JT, Morgan H: Effects of ischemia on function and metabolism of the isolated working rat heart. Am J Physiol 225: 651–658, 1973

    PubMed  Google Scholar 

  32. Koretsune Y, Marban E: Mechanism of ischemic contracture in ferret hearts: Relative roles of [Ca2+]i elevation and ATP depletion. Am J Physiol 258: H9–H16, 1990

    PubMed  Google Scholar 

  33. Gerken G, Schlette U: Metabolite status of the heart in acute insufficiency due to 1-fluoro-2,4-dinitrobenzene. Experientia 24: 17–19, 1968

    Article  PubMed  Google Scholar 

  34. Neely JR, Grotyohann LW: Role of glycolytic products in damage to ischemic myocardium. Dissociation of adenosine triphosphate levels and recovery of function of reperfused ischemic myocardium. Circ Res 55: 816–824, 1984

    PubMed  Google Scholar 

  35. Hoerter JA, Lauer C, Vassort GK, Gueron M: Sustained function of normoxic hearts depleted in ATP and phosphocreatine: A P-NMR study. Am J Physiol 255: C192–C201, 1988

    PubMed  Google Scholar 

  36. Kupriyanov VV, Lakomkin VL, Kapelko VI, Steinschneider A, Ya Ruuge EK, Saks VA: Dissociation of adenosine diphosphate levels and contractile function of in isovolumic hearts perfused with 2-deoxyglycose. J Mol Cell Cardiol 19: 729–740, 1987

    PubMed  Google Scholar 

  37. Saks VA, Khuchua ZA, Vasilyeva EV, Belikova YO, Kuznetsov AV: Metabolic compartmentation and substrate channeling in muscle cells. Role of coupled creatine kinases in in vivo regulation of cellular respiration. A synthesis. Mol Cell Biochem 133/134: 155–192, 1994

    Article  Google Scholar 

  38. Carrasco AJ, Dzeja PP, Alekseev AE, Pucar D, Zingman LV, Abracham MR, Hodgson D, Bienengraeber M, Puceat M, Janssen E, Wieringa B, Terzik A: Adenylate kinase phosphotransfer communicates cellular energetics signals to ATP sensitive potassium channels. Proc Natl Acad Sci USA 98: 7623–7628, 2001

    Article  PubMed  Google Scholar 

  39. Dzeja PP, Zelenznikar RJ, Goldberg ND: Adenylate kinase: Kinetic behaviour in intact cells indicates it is integral to multiple cellular processes. Mol Cell Biochim 184: 169–182, 1998

    Article  Google Scholar 

  40. Saks VA, Kuznetsov AV, Khuchua ZA, Vasilyeva EV, Belikova Yu O, Kesvatera T, Tiivel T: Control of cellular respiration in vivo by mitochondrial outer membrane and by creatine kinase. A new speculative hypothesis: possible involvement of mitochondrial-cytoskeleton interactions. J Mol Cell Cardiol 27: 625–645, 1995

    PubMed  Google Scholar 

  41. Walliman T, Wyss M, Brdiczka D, Nicolay K, Eppenberger H: Transport of energy in muscle: The phosphorylcreatine shuttle. Biochem J 281: 21–40, 1992

    PubMed  Google Scholar 

  42. Ross Ellington W: Evolution and physiological roles of phosphagen systems. Annu Rev Physiol 63: 289–325, 2001

    Article  PubMed  Google Scholar 

  43. Wyss M, Kaddurah-Daouk R: Creatine and creatinine metabolism. Physiol Rev 80: 1107–1213, 2000

    PubMed  Google Scholar 

  44. Saks VA, Ventura-Clapier R (eds): Cellular Bioenergetics. Role Coupled Creatine Kinase. Kluwer Academic Publishers, Dordrecht, 1994, pp 1–348

  45. Saks VA, Ventura, Clapier R, Leverve X, Rossi A, Rigoulet M (eds): Mol Cell Biochem 184: 3–9, 1998

  46. Saks VA, Veksler VI, Kuznetsov AV, Kay L, Sikk P, Tiivel T, Tranqui L, Olivares J, Winkler K, Wiedemann F, Kunz WS: Permeabilized cell and skinned fiber techniques in studies of mitochondrial function in vivo. Mol Cell Biochem 184: 81–100, 1998

    Article  PubMed  Google Scholar 

  47. Pucar D, Dzeja PP, Bast P, Juranic N, Macura S, Terzik A: Cellular energetics in the preconditioned state. Protective role for phosphotransfer reactions captured by 18O-assisted 31PNMR. J Biol Chem 276: 44812–44819, 2001

    Article  PubMed  Google Scholar 

  48. Joubert F, Hoerter JA, Mazet JL: Discrimination of cardiac subcellular creatine kinase fluxes by NMR spectroscopy: A new method of analysis. Biophys J 81: 2995–3004, 2001

    PubMed  Google Scholar 

  49. Aliev MK, Saks VA: Compartmentalised energy transfer in cardio-myocytes. Use of mathematical modeling for analysis of in vivo regulation of respiration. Biophys J 73: 428–445, 1997

    PubMed  Google Scholar 

  50. Vendelin M, Kongas O, Saks VA: Regulation of mitochondrial respiration in heart cells analyzed by reaction-diffusion model of energy transfer. Am. J. Physiol 278: C747–C764, 2000

    Google Scholar 

  51. Kushmerick MJ, Podolsky RJ: Ion mobility in muscle cells. Science 166: 1297–1298, 1969

    PubMed  Google Scholar 

  52. Meyer RA, Sweeney HL, Kushmerick MJ: A simple analysis of the ‘phosphocreatine shuttle’. Am J Physiol 246: C365–C377, 1984

    PubMed  Google Scholar 

  53. Yoshizaki K, Seo Y, Nishikawa, Morimoto T: Application of pulsed-gradient 31P NMR on frog muscle to measure the diffusion rates of phosphorus compounds in cells. Biophys J 38: 209–211, 1982

    PubMed  Google Scholar 

  54. de Graaf RA, Van Kranenburg A, Nicolay K: In vivo 31P-NMR spectroscopy of ATP and phosphocreatine in rat skeletal muscle. Biophys J 78: 1657–1664, 2000

    PubMed  Google Scholar 

  55. Kinsey ST, Locke BR, Benke B, Moerland TS: Diffusional anisotropy is induced by subcellular barriers in skeletal muscle. NMR Biomed 12: 1–7, 1999

    Article  PubMed  Google Scholar 

  56. Papadopuloulos S, Jurgens KD, Gros G: Protein diffusion in living skeletal muscle fibers: Dependence on protein size, fiber type, and contraction. Biophys J 79: 2084–2094, 2000

    PubMed  Google Scholar 

  57. Friedrich P: Dynamic compartmentation in soluble multienzyme system. In: G.R. Welch (ed). Organized Multienzyme Systems. Catalytic Properties. Academic Press, New York, London, 1985, pp 141–176

    Google Scholar 

  58. Saks V, Kuznetsov A, Andrienko T, Usson Y, Appaix F, Guerrero K, Kaambre T, Sikk P, Lemba M, Vendelin M: Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J, 2003

  59. Joubert F, Mazet J-L, Mateo P, Hoerter JA: 31P NMR detection of subcellular creatine kinase fluxes in the perfused rat heart: Contractility modifies energy transfer pathways. J Biol Chem 277: 18469–18476, 2002

    Article  PubMed  Google Scholar 

  60. Joubert F, Hoerter JA, Mazet J-L: Modeling the energy transfer pathways. Creatine kinase activities and heterogeneous distribution of ADP in the perfused heart. Mol Biol Rep 29: 171–176, 2002

    Article  PubMed  Google Scholar 

  61. McLellan G, Weisberg A, Winegrad S: Energy transport from mitochondria to myofibril by a creatine phosphate shuttle in cardiac cells. Am J Physiol 245: C423–C427, 1983

    PubMed  Google Scholar 

  62. Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA: Glucose generates sub-plasma membrane ATP microdomains in single islet-cells. J Biol Chem 274: 13291–13291, 1999

    Google Scholar 

  63. Appaix F, Kuznetsov A, Usson Y, Kay L, Andrienko T, Olivares J, Kaambre T, Sikk P, Margreiter R, Saks V: Possible role of cytoskeleton in intracellular arrangement and regulation of mitochondria. Exp Physiol 88: 175–190, 2003

    Article  PubMed  Google Scholar 

  64. Saks VA, Dos Santos P, Gellerich FN, Diolez P: Quantitative studies of enzyme-substrate compartmentation, functional coupling and metabolic channeling in muscle cells. Mol Cell Biochem 184: 291–307, 1998

    Article  PubMed  Google Scholar 

  65. Westerhoff HV, van Echteld CJA, Jeneson JAL: On the expected relationship between Gibbs energy of ATP hydrolysis and muscle performance. Biophys Chem 54: 137–142

  66. Saks VA, Kuznetsov AV, Kupriyanov VV, Miceli MV, Jacobus WJ: Creatine kinase of rat heart mitochondria. The demonstration of functional coupling to oxidative phosphorylation in an inner membrane-matrix preparation. J Biol Chem 260: 7757–7764, 1985

    PubMed  Google Scholar 

  67. Seppet E, Kaambre T, Sikk P, Tiivel T, Vija H, Kay L, Appaix F, Tonkonogi M, Sahlin K, Saks VA: Functional complexes of mitochondria with MgATPases of myofibrils and sarcoplasmic reticulum in muscle cells. Biochim Biophys Acta 1504: 379–395, 2001

    PubMed  Google Scholar 

  68. Saks VA, Kaambre T, Sikk P, Eimre M, Orlova E, Paju K, Piirsoo A, Appaix F, Kay L, Regiz-Zagrosek V, Fleck E, Seppet E: Intracellular energetic units in red muscle cells. Biochem J 356: 643–657, 2001

    Article  PubMed  Google Scholar 

  69. Kaasik A, Veksler V, Boehm E, Novotova M, Minajeva A, Ventura-Clapier R: Energetic crosstalk between organelles. Architectural integration of energy production and utilization. Circ Res 89: 153–159, 2001

    PubMed  Google Scholar 

  70. Bricknell OL, Opie LH: A relationship between adenosine triphosphate, glycolysis and ischemic contracture in the isolated rat heart. J Mol Cell Cardiol 13: 941–945, 1981

    Article  PubMed  Google Scholar 

  71. Mercer RW, Dunham PB: Membrane-bound ATP fuels the Na/K pump. Studies on membrane-bound glycolytic enzymes on inside-out vesicles from human red cell membranes. J Gen Physiol 78: 547–568, 1981

    Article  PubMed  Google Scholar 

  72. Weiss JN, Lamp ST: Glycolysis preferentially inhibits ATP-sensitive K-channels in isolated guinea-pig cardiac myocytes. Science 238: 67–69, 1987

    Google Scholar 

  73. Han JW, Thieleczek R, Varsany M, Heimeyer LMG: Compartmentalized ATP synthesis in skeletal muscle triads. Biochemistry 31: 377–384, 1992

    Article  PubMed  Google Scholar 

  74. Jurevicius J, Fischmeister R: cAMP compartmentation is responsible for a local activation of cardiac Ca2+ channels by α-adrenergic agonists. Proc Natl Acad Sci USA 93: 295–299, 1996

    Article  PubMed  Google Scholar 

  75. Carmeliet E: A fuzzy subsarcolemmal space for intracellular Na+ in cardiac cells? Cardiovasc Res 26: 433–442, 1992

    PubMed  Google Scholar 

  76. Bers D: Excitation-Contraction Coupling and Cardiac Contraction. Kluwer Academic Publishers, Dordrecht, 2001

    Google Scholar 

  77. Guatimosim S, Dilly K, Santana LF, Jafri MS, Sobie EA, Lederer WJ: Local Ca2+ signaling and EC coupling in heart: Ca2+ sparks and the regulation of [Ca2+]i transient. J Mol Cell Cardiol 34: 941–950, 2002

    Article  PubMed  Google Scholar 

  78. Roberts V, Gurlini P, Tosello V, Nagai T, Miyawaki A, Di Lisa F, Pozzan T: Beat-to beat oscillations of mitochondrial [Ca2+] in cardiac cells. EMBO J 17: 4998–5007, 2001

    Article  Google Scholar 

  79. Lipp P, Niggli E: Submicroscopic calcium signals as fundamental events of excitation-contraction coupling in guinea-pig cardiac myocytes. J Physiol 492: 31–38, 1996

    PubMed  Google Scholar 

  80. Niggli E: Localized intracellular calcium signalling: Calcium sparks and calcium quarks. Ann Rev Physiol 61: 311–335, 1999

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ovádi, J., Saks, V. On the origin of intracellular compartmentation and organized metabolic systems. Mol Cell Biochem 256, 5–12 (2004). https://doi.org/10.1023/B:MCBI.0000009855.14648.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MCBI.0000009855.14648.2c

Navigation