Skip to main content
Log in

Virions and the Coat Protein of the Potato Virus X Interact with Microtubules and Induce Tubulin Polymerization In Vitro

  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

A study was made of the in vitro interactions of virions and the coat protein (CP) of the potato virus X (PVX) with microtubules (MT). Both virions and CP cosedimented with taxol-stabilized MT. In the presence of PVX CP, tubulin polymerized to produce structures resistant to chilling. Electron microscopy revealed the aberrant character of the resulting tubulin polymers (protofilaments and their sheets), which differed from MT assembled in the presence of cell MAP2. In contrast, PVX virions induced the assembly of morphologically normal MT sensitive to chilling. Virions were shown to compete with MAP2 for MT binding, suggesting an overlap for the MT sites interacting with MAP2 and with PVX virions. It was assumed that PVX virions interact with MT in vivo and that, consequently, cytoskeleton elements participate in intracellular compartmentalization of the PVX genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Bassell G.J., Oleynikov Y., Singer R.H. 1999. The travels of mRNAs through all cells large and small. FASEB J. 13, 447–454.

    Google Scholar 

  2. Jansen R.P. 1999. RNA-cytoskeletal associations. FASEB J 13, 455–466.

    Google Scholar 

  3. Ploubidou A., Way M. 2001. Viral transport and the cytoskeleton. Curr. Opin. Cell Biol. 13, 97–105.

    Google Scholar 

  4. Hugdahl J.D., Bokros C.L., Morejohn L.C. 1995. End-to-end annealing of plant microtubules by the p86 sub-unit of eukaryotic initiation factor-(iso)4F. Plant Cell. 7, 2129–2138.

    Google Scholar 

  5. Moore R.C., Cyr R.J. 2000. Association between elongation factor-1 alpha and microtubules in vivo is domain dependent and conditional. Cell. Motil. Cytoskel. 45, 279–292.

    Google Scholar 

  6. Chuong S.D., Mullen R.T., Muench D.G. 2002. Identification of a rice RNA-and microtubule-binding protein as the multifunctional protein, a peroxisomal enzyme involved in the beta-oxidation of fatty acids. J. Biol. Chem. 277, 2419–2429.

    Google Scholar 

  7. Aaziz R., Dinant S., Epel B.L. Plasmodesmata and plant cytoskeleton. 2001. Trends Plant Sci. 6, 326–330.

    Google Scholar 

  8. Baluška F., Volkmann D., Barlow P.W. 2001. Motile plant cell body: a “bug” within a “cage”. Trends Plant Sci. 6, 104–111.

    Google Scholar 

  9. Heinlein M. 2002. The spread of tobacco mosaic virus infection: insights into the cellular mechanism of RNA transport. Cell. Mol. Life Sci. 59, 58–82.

    Google Scholar 

  10. Karasev A.V., Kashina A.S., Gelfand V.I., Dolja V.V. 1992. HSP70-related 65kDa protein of beet yellows closterovirus is a microtubule-binding protein. FEBS Lett. 304, 12–14.

    Google Scholar 

  11. von Bargen S., Salchert K., Paape M., Piechulla B., Kellmann J.-W. 2001. Interactions between tomato spotted wilt virus movement protein and plant proteins showing homologies to myosin, kinesin, and DNAJ-like chaperones. Plant Physiol. Biochem. 39, 1083–1093.

    Google Scholar 

  12. McLean B.G., Zupan J., Zambryski P.C. 1995. Tobacco mosaic virus movement protein associates with the cytoskeleton in tobacco cells. Plant Cell. 7, 2101–2114.

    Google Scholar 

  13. Boyko V., Ferralli J., Heinlein M. 2000. Cell-to-cell movement of TMV RNA is temperature-dependent and corresponds to the association of movement protein with microtubules. Plant J. 22, 315–325.

    Google Scholar 

  14. Boyko V., Ferralli J., Ashby J., Schellenbaum P., Heinlein M. 2000. Function of microtubules in intracellular transport of plant virus RNA. Nature Cell Biology. 2, 826–832.

    Google Scholar 

  15. Mas P., Beachy R.N. 2000. Role of microtubules in the intracellular distribution of tobacco mosaic virus movement protein. Proc. Natl. Acad. Sci. USA. 97, 12345–12349.

    Google Scholar 

  16. Kotlizky G., Katz A., van der Laak J., Boyko V., Lapidot M., Beachy R.N., Heinlein M., Epel B.L. 2001. A dysfunctional movement protein of tobacco mosaic virus interferes with targeting of wild-type movement protein to microtubules. Mol. Plant-Microbe Interact. 14, 89–904.

    Google Scholar 

  17. Boyko V., Ashby J.A., Suslova E., Ferralli J., Sterthaus O., Deom C.M., Heinlein M. 2002. Intramolecular complementing mutatons in Tobacco Mosaic Virus movement protein confirm a role for microtubule association in viral RNA transport. J. Virol. 76, 3974–3980.

    Google Scholar 

  18. Kahn T.W., Lapidot M., Heinlein M., Reichel C., Cooper B., Gafny R., Beachy R.N. 1998. Domains of the TMV movement protein involved in subcellular localization. Plant J. 15, 15–25.

    Google Scholar 

  19. Gillespie T., Boevink P., Haupt S., Roberts A.G., Toth R., Valentine T., Chapman S., Oparka K.J. 2002. Functional analysis of a DNA-shuffled movement protein reveals that microtubules are dispensable for the cell-to-cell movement of tobacco mosaic virus. Plant Cell. 14, 1207–1222.

    Google Scholar 

  20. Batten J.S., Yoshinari S., Hemenway C. 2003. Potato virus X: a model system for virus replication, movement and gene expression. Mol. Plant Pathol. 4, 125–131.

    Google Scholar 

  21. Callaway A., Giesman-Cookmeyer D., Gillock E.T., Sit T.L., Lommel S.A. 2001. The multifunctional capsid proteins of plant RNA viruses. Ann. Rev. Phytopathol. 39, 419–460.

    Google Scholar 

  22. Lough T.J., Shash K., Xoconostle-Cazares B., Hofstra K.R., Beck D.L., Balmori E., Forster R.L., Lucas W.J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Mol. Plant-Microbe Interact. 11, 801–814.

    Google Scholar 

  23. Lough T.J., Netzler N.E., Emerson S.J., Sutherland P., Carr F., Beck D.L., Lucas W.J., Forster R. L. 2000. Cell-to-cell movement of potexviruses: evidence for a ribonu-cleicprotein complex involving the coat protein and first triple gene block protein. Mol. Plant-Microbe Interact. 13, 962–974.

    Google Scholar 

  24. Santa Cruz S., Roberts A.G., Prior D.A.M., Chapman S., Oparka K.J. 1998. Cell-to-cell and phloem-mediated transport of potato virus X: The role of virions. Plant Cell. 10, 495–510.

    Google Scholar 

  25. Atabekov J.G., Rodionova N.P., Karpova O.V., Kozlovsky S.V., Poljakov V.Y. 2000. The movement protein-triggered in situ conversion of potato virus X virion RNA from a nontranslatable into a translatable form. Virology. 271, 259–263.

    Google Scholar 

  26. Kreis T., Vale R. 1999. Guidebook to the Cytoskeletal and Motor Proteins. Oxford: Oxford Univ. Press. 241–245.

    Google Scholar 

  27. Desai A., Mitchison T.J. 1997. Preparation and characterization of caged fluorescein tubulin. Methods Enzymol. 298, 125–132.

    Google Scholar 

  28. Rutten T., Chan J., Lloyd C.W. 1997. A 60-kDa plant microtubule-associated protein promotes the growth and stabilization of neurotubules in vitro. Proc. Natl. Acad. Sci. USA. 94, 4469–4474.

    Google Scholar 

  29. Chan J., Jensen C.G., Jensen L.C.W., Bush M., Lloyd C.W. 1999. The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc. Natl. Acad. Sci. USA. 96, 14931–14936.

    Google Scholar 

  30. Kumagai F., Hasezawa S., Nagata T. 1999. Putative involvement of a 49-kDa protein in microtubule assembly in vitro. Eur. J. Cell Biol. 78, 109–116.

    Google Scholar 

  31. Chan J., Mao G., Smertenko A., Hussey P.J., Naldrett M., Bottrill A., Lloyd C.W. 2003. Identification of a MAP65 isoform involved in directional expansion of plant cells. FEBS Lett. 534, 161–163.

    Google Scholar 

  32. Shelanski M.L., Gashkin F., Cantor C.R. 1973. Microtubule assembly in the absence of added nucleotides. Proc. Natl. Acad. Sci. USA. 79, 765–768.

    Google Scholar 

  33. Shanina N.A., Ivanov P.A., Chudinova E.M., Severin F.F., Nadezhdina E.S. 2001. Translation initiation factor 3 may bind with microtubules in mammalian cells. Mol. Biol.35, 638–646.

    Google Scholar 

  34. Ashford A.Y., Anderson S.S.L., Hyman A. 1998. Preparation of tubulin from bovine brain. In: Cell Biology: A Laboratory Book. Second Ed. N.Y.: Academic Press, 2, 205–212.

    Google Scholar 

  35. Kuznetsov S.A., Rodionov V.I., Gelfand V.I., Rosenblat V.A. 1981. Purification of high-Mr microtubule proteins MAP1 and MAP2. FEBS Lett. 135, 237–240.

    Google Scholar 

  36. Kellogg D.R., Field C.M., Alberts B.M. 1989. Identification of microtubule-associated proteins in the centrosome, spindle and kinetochore of the early Drosophila embryo. J. Cell Biol. 109, 2977–2991.

    Google Scholar 

  37. Loury O.H., Rosenrough N.J., Randall R.J. 1951. Protein measurements with the Folia phenol reagents. J. Biol. Chem. 193, 265–275.

    Google Scholar 

  38. Atabekov J.G., Rodionova N.P., Karpova O.V., Kozlovsky S.V., Novikov V.K., Arkhipenko M.V. 2001. Translation activation of encapsideted potato virus X RNA by coat protein phosphorylation. Virology. 286, 466–474.

    Google Scholar 

  39. Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 227, 680–685.

    Google Scholar 

  40. Gaskin F., Cantor Ch.R., Shelanski M.L. 1974. Turbidimetric studies of the in vitro assembly and disassambly of porcine neurotubules. J. Mol. Biol. 89, 737–758.

    Google Scholar 

  41. Serrano L., Avila J., Maccioni R.B. 1984. Controlled proteolysis of tubulin by subtilisin: localization of the site for MAP2 interaction. Biochemistry. 23, 4675–4681.

    Google Scholar 

  42. Koenig R., Tremaine J.H., Shepard J.F. 1978. In situ degradation of the protein chain of potato virus X at the N-and C-termini. J. Gen. Virol. 38, 329–337.

    Google Scholar 

  43. Gol'shtein M.I., Grebenshchikov N.I., Kust S.V., Kaftanova A.S., Dobrov E.N., Atabekov I.G. 1990. The effect of proteolytic cleavage on the ability of the potato virus X coat protein to reconstruct RNA and on virus infectivity. Mol. Genet. 2, 9–16.

    Google Scholar 

  44. Chapman S., Hills G., Watts J., Baulcombe D. 1992. Mutational analysis of the coat protein gene of potato virus X: effects on virion morphology and viral pathogenicity. Virology. 191, 223–230.

    Google Scholar 

  45. Rodionov V.I., Gelfand V.I., Rosenblat V.I. 1978. Microtubule assembly in the presence of glycerol and absence of protein polymerization factors. Dokl. Akad. Nauk. 239, 231–233.

    Google Scholar 

  46. Matsumura F., Hayashi M. 1976. Polymorphism of tubulin assembly. In vitro formation of sheet, twisted ribbon and microtubule. Biochim. Biophys. Acta. 453, 162–175.

    Google Scholar 

  47. Mandelkow E., Mandelkow E.M. 1990. Microtubular structure and tubulin polymerization. Curr. Opin. Cell Biol. 2, 3–9.

    Google Scholar 

  48. Lloyd C.W., Hussey P. 2001. Microtubule-associated proteins in plants - why we need a MAP. Mol. Cell Biol. 2, 40–47.

    Google Scholar 

  49. Maekawa T., Ogihara S., Murofushi H., Nagai R. 1990. Green algal microtubule-associated protein with a molecular weight of 90 kDa which bundles microtubules. Protoplasma. 158, 10–18.

    Google Scholar 

  50. Pierre P., Scheel J., Rickard J.E., Kreis T.E. 1992. CLIP-170 links endocytic vesicles to microtubules. Cell. 70, 887–900.

    Google Scholar 

  51. Rickard J.E., Kreis T.E. 1996. CLIPs for organelle-microtubule interactions. Trends Cell Biol. 6, 178–183.

    Google Scholar 

  52. Solovyev A.G., Stroganova T.A., Zamyatnin A.A. Jr., Fedorkin O.N., Schiemann J., Morozov S.Y. 2000. Sub-cellular sorting of small membrane-associated triple gene block proteins: TGBp3-assisted targeting of TGBp2. Virology. 269, 113–127.

    Google Scholar 

  53. Gorshkova E.N., Erokhina T.N., Stroganova T.A., Yelina N.E., Zamyatnin A.A. Jr., Kalinina N.O., Schiemann J., Solovyev A.G., Morozov S.Y. 2003. Immunodetection and fluorescent microscopy of transgenically expressed hordeivirus TGBp3 movement protein reveals its association with endoplasmic reticulum elements in close proximity to plasmodesmata. J. Gen. Virol. 84, 985–994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serazev, T.V., Nadezhdina, E.S., Shanina, N.A. et al. Virions and the Coat Protein of the Potato Virus X Interact with Microtubules and Induce Tubulin Polymerization In Vitro . Molecular Biology 37, 919–925 (2003). https://doi.org/10.1023/B:MBIL.0000008362.88344.f3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:MBIL.0000008362.88344.f3

Navigation