Skip to main content
Log in

Thermodynamic and kinetic behaviour of salicylsalicylic acid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The thermal behaviour of salicylsalicylic acid (CAS number 552-94-3) was studied by differential scanning calorimetry (DSC). The endothermic melting peak and the fingerprint of the glass transition were characterised at a heating rate of 10°C min-1. The melting peak showed an onset at T on = 144°C (417 K) and a maximum intensity at T max = 152°C (425 K), while the onset of the glass transition signal was at T on = 6°C. The melting enthalpy was found to be ΔmH = 28.9±0.3 kJ mol-1, and the heat capacity jump at the glass transition was ΔC P = 108.1±0.1 J K-1mol-1. The study of the influence of the heating rate on the temperature location of the glass transition signal by DSC, allowed the determination of the activation energy at the glass transition temperature (245 kJ mol-1), and the calculation of the fragility index of salicyl salicylate (m = 45). Finally, the standard molar enthalpy of formation of crystalline monoclinic salicylsalicylic acid at T = 298.15 K, was determined as ΔfHm o(C14H10O5, cr) = - (837.6±3.3) kJ mol-1, by combustion calorimetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. J. Cox, G. I. Gilmour and S. M. MacManus, Int. J. Pharm., 204 (2000) 133.

    Article  CAS  Google Scholar 

  2. J. A. M. Pulgarin and L. F. G. Bermejo, Talanta, 51 (2000) 89.

    Article  Google Scholar 

  3. O. N. Ré, J. Int. Med. Res., 7 (1979) 90.

    Google Scholar 

  4. J. M. Scheiman, E. M Behler, R. R Berardi and G. H. Elta, Digest. Dis. Sci., 34 (1989) 229.

    Article  CAS  Google Scholar 

  5. B. Greener, S. J. Archibal and M. Hodkinson, Angew. Chem. Int. Ed., 39 (2000) 3601.

    Article  CAS  Google Scholar 

  6. J. M. Hutchinson, J. Therm. Anal. Cal., 72 (2003) 619.

    Article  CAS  Google Scholar 

  7. See Japanese web data base: http://www.aist.go.jp

  8. J. Laugier and B. Bochu in Checkcell. http://www.ccp14.ac.uk/tutorial/Imgp.

  9. S. S. Pinto, H. P. Diogo and M. E. Minas da Piedade, J. Chem. Thermodynamics,35 (2003) 177.

    Article  CAS  Google Scholar 

  10. Certificate of Analysis of Standard Reference Material 39j-Benzoic Acid; National Institute of Standards and Technology: Gaithersburg, 1995.

  11. J. B. Pedley, Thermochemical Data and Structures of Organic Compounds: Vol. 1. Thermodynamics Research Center: College Station. 1994.

  12. T. B. Coplen, Pure Appl. Chem., 73 (2001) 667.

    CAS  Google Scholar 

  13. W. N. Hubbard, D. W. Scott and G. Waddington, in Experimental Thermochemistry, Vol. 1. F. D. Rossini editor, Interscience: New York. 1956. Chapter 5.

    Google Scholar 

  14. E. J. Prosen, in Experimental Thermochemistry, Vol. 1., F. D. Rossini editor; Interscience: New York 1956. Chapter 6.

    Google Scholar 

  15. M. Månsson and W. N. Hubbard, in Experimental Chemical Thermodynamics, Vol. 1. S. Sunner and M. Månsson editors; Pergamon Press: London 1979. Chap. 5.

    Google Scholar 

  16. J. E. Hurst, Jr. and B. K. Harrison, Chem. Eng. Comm., 112 (1992) 21.

    CAS  Google Scholar 

  17. In the absence of experimental value we used the value recommended for benzoic acid. L. Bjellerup Acta Chem. Scand., 15 (1961) 121.

  18. D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L. Churney and R. L. Nuttall, The NBS Tables of Chemical Thermodynamic Properties. J. Phys. Chem. Ref. Data 11 (1982) Supplement no. 2.

  19. CODATA Key Values for Thermodynamics. J. D. Cox, D. D. Wagman and V. A. Medvedev editors. Hemisphere: New York 1989.

    Google Scholar 

  20. P. G. Debenedetti, Metastable Liquids: concepts and principles, Princeton University Press, Princeton, New Jersey 1996.

    Google Scholar 

  21. L. H. Sperling, Introduction to Physical Polymer Science, John Wiley & Sons, Inc., New York 1992, Chap. 8.

    Google Scholar 

  22. J. J. Moura Ramos, C. A. M. Afonso and L. C. Branco, J. Therm. Anal. Cal., 71 (2003) 659.

    Article  CAS  Google Scholar 

  23. K. J. Crowley and G. Zografi, Termochim. Acta, 380 (2001) 79.

    Article  CAS  Google Scholar 

  24. D. Simatos, G. Blond, G. Roudaut, D. Champion, J. Perez and A. L. Faivre, J. Thermal Anal., 47 (1996) 1419.

    Article  CAS  Google Scholar 

  25. R. Bohmer, K. L. Ngai, C. A. Angell and D. J. Plazek, J. Chem. Phys., 99 (1993) 4201.

    Article  Google Scholar 

  26. R. Bohmer and C. A. Angell, Local and global relaxations in glass-forming materials, in 'Disorder Effects on Relaxational Processes', edited by R. Richert and A. Blumen, Springer-Verlag, Berlin, Heidelberg 1994.

    Google Scholar 

  27. C. T. Moynihan, A. J. Esteal, J. Wilder and J. Tucker, J. Phys. Chem., 76 (1974) 2673.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digo, H.P., Pinto, S.S. & Moura Ramos, J.J. Thermodynamic and kinetic behaviour of salicylsalicylic acid. Journal of Thermal Analysis and Calorimetry 77, 893–904 (2004). https://doi.org/10.1023/B:JTAN.0000041668.96994.e2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000041668.96994.e2

Navigation