Skip to main content
Log in

TA of non-stoichiometric ceria obtained via hydrothermal synthesis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Doped ceria was studied in the last 20 years as a solid electrolyte capable of replacing stabilized zirconia in fuel cells. Nevertheless, one of the problems concerned with the application of this material is the joint presence of the Ce(III) and Ce(IV) in the ceria sublattice, mainly under low partial pressure of oxygen. TG and DTA measurements were performed in order to verify non-stoichiometric character for cerias hydrothermally treated under reflux and in autoclave. X-ray powder diffraction was used to observe long-range structural evolution varying time and temperature of reaction and the type of hydrothermal synthesis. Finally, scanning electron microscopy (SEM) gave the temperature influence for powder morphology. Those techniques pointed out that: i) reaction temperature is not important for converting Ce3+ to Ce4+; ii) testing the reaction time parameter, it is observed quite complete oxidation for the 2-12 h range; and iii) the type of hydrothermal synthesis parameter influences the crystallinity and non-stoichiometric character of products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Huang, M. Feng and J. B. Goodenough, J. Am. Ceram. Soc., 81 (1998) 357.

    CAS  Google Scholar 

  2. C. Fisher, Solid Oxide Fuel Cell. Available on Internet via http://www.spice.or.jp/~fisher/sofc.html.

  3. X. Lin, L. Li, G. Li and W. Su, Mat. Chem. Phys., 69 (2001) 236.

    Article  CAS  Google Scholar 

  4. JCPDS International Committe for Diffraction Data, Card #43-1002.

  5. M. Mogensen, N. M. Sammes and G. A. Tompsett, Solid State Ionics, 129 (2000) 63.

    Article  CAS  Google Scholar 

  6. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry — Principles of Structure and Reactivity, Harper Collins College Publishers, New York 1993, p. 114.

    Google Scholar 

  7. P. Shuk, M. Greenblatt and M. Croft, J. Alloys Compd., 303 (2000) 465.

    Article  Google Scholar 

  8. P. Jakubus, A. Adamsky, M. Kurzawa and Z. Sojka, J. Therm. Anal. Cal., 72 (2003) 299.

    Article  CAS  Google Scholar 

  9. O. Turkoglu and I. Beleni, J. Therm. Anal. Cal., 73 (2003) 1001.

    Article  CAS  Google Scholar 

  10. T. Mori, J. Drennan, Y. Wang, J.-G. Li and T. Ikegami, J. Therm. Anal. Cal., 70 (2002) 309.

    Article  CAS  Google Scholar 

  11. N. Maffei and A. K. Kuriakose, Solid State Ionics, 107 (1998) 67.

    Article  CAS  Google Scholar 

  12. C. E. Milliken and S. Guruswamy, J. Am. Ceram. Soc., 84 (2001) 1533.

    Article  CAS  Google Scholar 

  13. T. Mori, T. Ikegami, H. Yamamura and T. Atake, J. Therm. Anal. Cal., 57 (1999) 831.

    Article  CAS  Google Scholar 

  14. M. T. Weller, Inorganic Materials Chemistry, Oxford University Press, Oxford 1994, p. 24.

    Google Scholar 

  15. A. AbrĂo, Química e Tecnologia das Terras — Raras, CETEM/CNPq, Rio de Janeiro 1994, p. 36.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Medeiros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malta, L.F.B., Cafffarena, V.R., Medeiros, M.E. et al. TA of non-stoichiometric ceria obtained via hydrothermal synthesis. Journal of Thermal Analysis and Calorimetry 75, 901–910 (2004). https://doi.org/10.1023/B:JTAN.0000027184.83711.54

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JTAN.0000027184.83711.54

Navigation