Skip to main content
Log in

High Order Computation of the History Term in the Equation of Motion for a Spherical Particle in a Fluid

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

The historical evolution of the equation of motion for a spherical particle in a fluid and the search for its general solution are recalled. The presence of an integral term that is nonzero under unsteady motion and viscous conditions allowed simple analytical or numerical solutions for the particle dynamics to be found only in a few particular cases. A general solution to the equation of motion seems to require the use of computational methods. Numerical schemes to handle the integral term of the equation of motion have already been developed. We present here adaptations of a first order method for the implementation at high order, which may employ either fixed or variable computation time steps. Some examples are shown to establish comparisons between diverse numerical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. AEA Technology Engineering Software Limited (1999). CFX-TASCflow Theory Documentation, AEA, Waterloo.

    Google Scholar 

  2. Alexander, P., and de la Torre, A. (2003). A program for the simulation and analysis of open atmospheric balloon soundings. Comput. Phys. Comm. 151, 96–120.

    Google Scholar 

  3. Auton, T. R., Hunt, J. C. R., and Prud'homme, M. (1988). The force exerted on a body in inviscid unsteady non-uniform rotational flow. J. Fluid Mech. 197, 241–257.

    Google Scholar 

  4. Babiano, A., Cartwright, J. H. E., Piro, O., and Provenzale, A. (2000). Dynamics of a small neutrally buoyant sphere in a fluid and targeting in hamiltonian systems. Phys. Rev. Lett. 84, 5764–5767.

    Google Scholar 

  5. Basset, A. B. (1888). On the motion of a sphere in a viscous liquid. Philos. Trans. Roy. Soc. London 179, 43–63.

    Google Scholar 

  6. Boussinesq, J. (1885). Sur la resistance qu'oppose un liquide indefini en repos. C. R. Acad. Sci. Paris 100, 935–937.

    Google Scholar 

  7. Butcher, J. C. (1994). Runge–Kutta methods in modern computation, part I: Fundamental concepts. Comput. Phys. 8, 411–415.

    Google Scholar 

  8. Butcher, J. C. (1994). Runge–Kutta methods in modern computation, part II: Implicit methods and related applications. Comput. Phys. 8, 512–517.

    Google Scholar 

  9. Chang, E. J., and Maxey, M. R. (1994). Unsteady flow about a sphere at low to moderate Reynolds number. Part 1. Oscillatory motion. J. Fluid Mech. 277, 347–379.

    Google Scholar 

  10. Chang, E. J., and Maxey, M. R. (1995). Unsteady flow about a sphere at low to moderate Reynolds number. Part 2. Accelerated motion. J. Fluid Mech. 303, 133–153.

    Google Scholar 

  11. Coimbra, C. F. M., and Rangel, R. H. (1998). General solution of the particle momentum equation in unsteady Stokes flow. J. Fluid Mech. 370, 53–72.

    Google Scholar 

  12. Ferziger, J. H., and Perić, M. (2002). Computational Methods for Fluid Dynamics, Springer, Berlin.

    Google Scholar 

  13. Li, L., and Michaelides, E. E. (1992). The magnitude of Basset forces in unsteady multiphase flow computations. J. Fluids Eng. 114, 417–419.

    Google Scholar 

  14. Lovalenti, P. M., and Brady, J. F. (1993). The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number. J. Fluid Mech. 256, 561–605.

    Google Scholar 

  15. Lovalenti, P. M., and Brady, J. F. (1993). The force on a sphere in a uniform flow with small-amplitude oscillations at finite Reynolds number. J. Fluid Mech. 256, 607–614.

    Google Scholar 

  16. Maxey, M. R. (1993). The equation of motion for a small rigid sphere in a nonuniform or unsteady flow. Gas-solid flows (ASME) 166, 57–62.

    Google Scholar 

  17. Maxey, M. R. (2000). Note on initial conditions when using the history term. Personal communication.

  18. Maxey, M. R., and Riley, J. J. (1983). Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883–889.

    Google Scholar 

  19. Mei, R. (1994). Flow due to an oscillating sphere and an expression for unsteady drag on the sphere at finite Reynolds number. J. Fluid Mech. 270, 133–174.

    Google Scholar 

  20. Mei, R., and Adrian, R. J. (1992). Flow past a spehre with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323–341.

    Google Scholar 

  21. Mei, R., Lawrence, C. J., and Adrian, R. J. (1991). Unsteady drag on a sphere at finite Reynolds number with small fluctuations in the free-stream velocity. J. Fluid Mech. 233, 613–631.

    Google Scholar 

  22. Michaelides, E. E. (1992). A novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4, 1579–1582.

    Google Scholar 

  23. Michaelides, E. E. (1997). Review–The transient equation of motion for particles, bubbles, and droplets. J. Fluids Eng. 119, 233–247.

    Google Scholar 

  24. Oseen, C. W. (1927). Hydrodynamik, Akademische Verlagsgesellschaft, Leipzig.

    Google Scholar 

  25. Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical Recipes in Fortran: The Art of Scientific Computing, Cambridge University Press, Cambridge.

    Google Scholar 

  26. Reeks, M. W., and McKee, S. (1984). The dispersive effects of Basset history forces on particle motion in a turbulent flow. Phys. Fluids 27, 1573–1582.

    Google Scholar 

  27. Tatom, F. B. (1988). The Basset term as a semiderivative. Appl. Sci. Res. 45, 283–285.

    Google Scholar 

  28. Taylor, G. I. (1928). The forces on a body placed in a curved or converging stream of fluid. Proc. Roy. Soc. London Ser. A 120, 260–283.

    Google Scholar 

  29. Vojr, D. J., and Michaelides, E. E. (1994). Effect of the history term on the motion of rigid spheres in a viscous fluid. Intl. J. Multiphase Flow 20, 547–556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, P. High Order Computation of the History Term in the Equation of Motion for a Spherical Particle in a Fluid. Journal of Scientific Computing 21, 129–143 (2004). https://doi.org/10.1023/B:JOMP.0000030072.32108.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOMP.0000030072.32108.d9

Navigation