Skip to main content
Log in

Allelochemical Potential of Callicarpa acuminata

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The allelochemical potential of Callicarpa acuminata (Verbenaceae) was investigated by using a biodirected fractionation study as part of a long-term project to search for bioactive compounds among the rich biodiversity of plant communities in the Ecological Reserve El Eden, Quintana Roo, Mexico. Aqueous leachate, chloroform-methanol extract, and chromatographic fractions of the leaves of C. acuminata inhibited the root growth of test plants (23–70%). Some of these treatments caused a moderate inhibition of the radial growth of two phytopathogenic fungi, Helminthosporium longirostratum and Alternaria solani (18–31%). The chloroform-methanol (1:1) extract prepared from the leaves rendered five compounds: isopimaric acid (1), a mixture of two diterpenols [sandaracopimaradien-19-ol (3) and akhdarenol (4)], α-amyrin (5), and the flavone salvigenin (6)]. The phytotoxicity exhibited by several fractions and the full extract almost disappeared when pure compounds were evaluated on the test plants, suggesting a synergistic or additive effect. Compounds (4), (5), and the semisynthetic derivative isopimaric acid methyl ether (2) had antifeedant effects on Leptinotarsa decemlineata. Compound 5 was most toxic to this insect, followed by (2), (4), and (6) with moderate to low toxicity. No correlation was found between antifeedant and toxic effects on this insect, suggesting that different modes of action were involved. All the test compounds were cytotoxic to insect Sf9 cells while (6), (4), and (1) also affected mammalian Chinese Hamster Ovary (CHO) cells. Compound 5 showed the strongest selectivity against insect cells. This study contributes to the knowledge of the defensive chemistry and added value of C. acuminata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18:265–267.

    Google Scholar 

  • Agrawal, P. K., Singh, A. K., and Bhakuni, R. S. 1996. Complete spectral assignment of calliterpenone by two-dimensional NMR techniques and carbon-13 assignments for related phyllocladane diterpenoids. Indian J. Chem. 35:803–805.

    Google Scholar 

  • Akihisa, T., Yasikawa, K., Oinuma, H., Kasahara, Y., Yamanouchi, S., Takido, M., Kumaki, K., and Tamura, T. 1996. Triterpene alcohols from the flowers of compositae and their anti-inflammatory effects. Phytochemistry 6:1255–1260.

    Google Scholar 

  • Ahmad, V. U. and Ur-Rahman, A. 1994. Handbook of Natural Products Data: Vol. 2. Pentaccyclic Triterpenoids. Elsevier, Amsterdam.

    Google Scholar 

  • Anaya, A. L., Calera, M. R., Mata, R., and Pereda Miranda, R. 1990. Allelopathic potential of compounds isolated from Ipomoea tricolor Cav. (Convolvulaceae). J. Chem. Ecol. 16:2145–2152.

    Google Scholar 

  • Anderson, J. E., Goetz, C. M., and Mclaughlin, J. L. 1991. A blind comparison of simple bench-top bioassays and human tumor cell cytotoxicities as antitumor prescreens. Phytochem. Stud. 2:107–111.

    Google Scholar 

  • Bernays, E. A. and Chapman, R. F. 2000. Plant secondary compounds and grasshoppers: Beyond plant defenses. J. Chem. Ecol. 26:1773–1794.

    Google Scholar 

  • Cabrera Cano, E., Sousa Sánchez, M., and Téllez Valdéz, O. 1982. Imágenes de la Flora Quintanarroense. CIQRO, México.

    Google Scholar 

  • Chang, L. C., Song, L. L., Parl, E. J., Luyengi, L., Lee, K. J., Farnsworth, N. R., Pezzuto, J. M., and Kinghorn, A. D. 2000. Bioactive constituents of Thuja occidentalis. J. Nat. Prod. 63:1235–1238.

    Google Scholar 

  • Cruz-Ortega, R., Ayala-Cordero, G., and Anaya, A. L. 2002. Allelochemical stress produced by the aqueous leachate of Callicarpa acuminata: Effects on roots of tomato, beans, and maize. Physiol. Plantarum 116:20–27.

    Google Scholar 

  • Einhellig, F. 2002. The physiology of allelochemical action: Clues and views, pp. 1–23. In M., Reigosa, and N., Pedrol (Eds.). Allelopathy: From Molecules to Ecosystems. Science Publishers Inc., Enfield, NH.

    Google Scholar 

  • Farrar, R. R., Barbour, J. J., and Kennedy, G. 1989. Quantifying food consumption and growth in insects. Ann. Entomol. Soc. Am. 82:593–598.

    Google Scholar 

  • González-Coloma, A., Guadaño, A., De inés, C., Martinez-díaz, R., and Cortes, D. 2002a. Selective action of acetogenin mitochondrial Complex I inhibitors. Z. Naturforsch 57c:1028–1034.

    Google Scholar 

  • González-Coloma, A., Valencia, F., Martín, N., Hoffmann, J. J., Hutter, L., Marco, J. A., and Reina, M. 2002b. Silphinene sesquiterpenes as model insect antifeedants. J. Chem. Ecol. 28:117–129.

    Google Scholar 

  • Grant, P. K., Huntrakul, C., Robertson, J. M. 1969. Diterpenes of Dacrydium colensoi. VIII. Sandaracopimaradien-19-ol and 2α-carboxycolensen-2β-ol. Aus. J. Chem. 22:1265–1270.

    Google Scholar 

  • <bib-book type="handbook">Harborne, J. B. and Baxter, H. 1993. Phytochemical Dictionary: A Handbook of Bioactive Compounds from Plants. Taylor and Francis, London.

    Google Scholar 

  • Hayashi, T., Otsuka, H., and Takeda, Y. 1997. Antiviral activity of 5,6,7-trimethoxyflavone and its potentiation of the antiherpes activity of acyclovir. J. Antimicr. Chemother. 39:821–824.

    Google Scholar 

  • Hu, Y. M., Shen, Y. M., Gan, F. Y., and Hao, X. J. 2002. Four diterpenes from Callicarpa pedunculata. Bioch. Syst. Ecol. 30:999–1001.

    Google Scholar 

  • Huang, F. Y., Chung, B. Y., Bentley, M. D., and Alford, A. R. 1995. Colorado potato beetle antifeedants by simple modification of the birchbark triterpene betulin. J. Agric. Food Chem. 43:2513–2516.

    Google Scholar 

  • Jagadeesh, S. G., Krupadanam, G. L., and Srimannarayana, G. 1998. Tobacco caterpillar antifeedent from the gotti stem wood triterpene betulinic acid. J. Agric. Food Chem. 46:2797–2799.

    Google Scholar 

  • Kawazu, K., Inaba, M., and Mitsui, T. 1967a. Studies on fish-killing components of Callicarpa candicans. Part I. Isolation of callicarpone and its toxicity to fish. Agr. Biol. Chem. 31:494–497.

    Google Scholar 

  • Kawazu, K., Inaba, M. and Mitsui, T. 1967b. Studies on fish-killing components of Callicarpa candicans. Part II. Structure of callicarpone. Agr. Biol. Chem. 31:498–506.

    Google Scholar 

  • Kitajima, J., Komori, T., and Kawasaki, T. 1982. Studies on the constituents of the crude drug “Fritillariae Bulbus.” III. On the diterpenoid constituents of fresh bulbs of Fritillaria thunbergii Miq. Chem. Pharm. Bull. 30:3912–3921.

    Google Scholar 

  • König, G. M. and Wright, A. D. 1995. Concerted application of a shift reagent and 2D NOESY to the structure determination of new natural products from the tropical brown alga Dictyopteris delicatula. Magn. Reson. Chem. 33:178–183.

    Google Scholar 

  • Langenheim, J. H. 1994. Higher plant terpenoids: A phytocentric overview of their ecological roles. J. Chem. Ecol. 20:1223–1280.

    Google Scholar 

  • Lugemwa, F. N., Huang, F. Y., Bentley, M. D., Mendel, M. J., and Alford, A. R. 1990. A Heliothis zea antifeedant from the abundant birchbark triterpene betulin. J. Agric. Food. Chem. 38:493–496.

    Google Scholar 

  • Martínez, M. 1979. Catalogo de Nombres Vulgares y Científicos de Plantas Mexicanas. Fondo de Cultura Económica, México.

    Google Scholar 

  • Mead, R., Curnow, R. N., and Hasted, A. M. 2002. Statistical Methods in Agriculture and Experimental Biology. 3rd edn. Chapman and Hall/CRC, Boca Raton, FL.

    Google Scholar 

  • Meyer, B. N., Ferrrigni, N. R., Jacobsen, J. E, Nichols, D. E., and Mc Laughlin, J. L. 1982. Brine shirmp: A convenient general bioassay for active plant constituents. Plant Res. Medica 45:31–34.

    Google Scholar 

  • Miura, K., Kikuzaki, H., and Nakatani, N. 2001. Apianane terpenoids from Salvia officinalis. Phytochemistry 58: 1171–1175.

    Google Scholar 

  • Montagnac, A., Provost, J. P., Litaudon, M., and Païs, M. 1997. Antimitotic and cytotoxic constituents of Myodocarpus gracilis. Planta Med. 63:365–366.

    Google Scholar 

  • Morita, S. 1989. Terpenoid compounds of Measasugi (a cultivar of Cryptomeria japonica D. Don). Kenkyu Hokoku-Kagoshima-Ken Kogyo Gijutsu Senta 3:79–83.

    Google Scholar 

  • Mossman, T. 1983. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65, 55–63.

    Google Scholar 

  • Poitout, S. and Bues, S. 1970. Elevage de plusieurse speces de Lepidopteres Noctuidae sur milieu artificiel simplifié. Ann. Zool. Ecol. Anim. 2:79–91.

    Google Scholar 

  • Powell, J. S. and Raffa, K. 1999. Effects of selected Larix laricina terpenoids on Lymantria dispar (Lepidoptera: Lymantriidae) development and behavior. Environ. Entomol. 28:148–154.

    Google Scholar 

  • Reina, M., González-Coloma, A., Gutiérrez, C., Cabrera, R., Rodriguez, M. L., Fajardo, V., and Villarroel, L. 2001. Defensive chemistry of Senecio miser Hook. J. Nat. Prod. 64:6–11.

    Google Scholar 

  • <bib-other type="thesis">Santana, O. 2000. Estudio fitoquímico y biológico de endemismos canarios: Echium wildpretii subsp. wildpretii Pears & Hook (Boraginaceae). Tesis Doctoral, Universidad Autónoma de Madrid.

  • Talapatra, S. K., Polley, M., and Talapatra, B. 1994. Calliphyllin, a new diterpene from the leaves of Callicarpa macrophylla. J. Indian Chem. Soc. 71:527–532.

    Google Scholar 

  • Tellez, M. R., Dayan, F. E., Schrader, K. K., Wedge, D. E., and Duke, S. O. 2000. Composition and some biological activities of the essential oil of Callicarpa americana (L.). J. Agric. Food Chem. 48:3008–3012.

    Google Scholar 

  • Tezuka, Y., Stampoulis, P., Banskota, A. H., Awale, S., Ran, K. Q., Saiki, I., and Kadota, S. 2000. Constituents of the Vietnamese medicinal plant Ortosiphon stamineus. Chem. Pharm. Bull. 48:1711–1719.

    Google Scholar 

  • Woldemichael, G. M., Wächter, G., Shing, M. P., Maiese, W. M., and Timmermann, B. N. 2003. Antibacterial diterpenes from Calceolaria pinifolia. J. Nat. Prod. 66:242–246.

    Google Scholar 

  • Xaasan, C. C., Xaasan Ciilmi, C., Faarax, M. X., Passannanti, S., Piozzi, F., and Paternostro, M. 1980. Unusual flavones from Ocimum canum. Phytochemistry 19:2229–2230.

    Google Scholar 

  • Xu, J., Harrison, L. J., Vittal, J. J., Xu, Y. J., and Goh, S. H. 2000. Four new clerodane diterpenoids from Callicarpa pentandra. J. Nat. Prod. 63:1062–1065.

    Google Scholar 

  • Yamaaki, K., Shinohara, H., Kono, T., Horiike, M., Kin, H., Morisawa, J., Kamei, S., Aoki, S., and Tauchi, M. 1998. Pest repellents from Sugi wood. Jpn. Kokai Tokkyo Koho, JP 10291904 A2 19981104 Heisei.

  • Yamada, T. 1998. Responses of sugi Sapwood to fungal invasion. Reaction zone barrier formation in a differentiated sapwood. Shinrin Sogo Kenkyusho Kenkyu Hokoku 375:69–162.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Luisa Anaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anaya, A.L., Mata, R., Sims, J.J. et al. Allelochemical Potential of Callicarpa acuminata . J Chem Ecol 29, 2761–2776 (2003). https://doi.org/10.1023/B:JOEC.0000008019.22063.5c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOEC.0000008019.22063.5c

Navigation