Skip to main content
Log in

Electrochemical and Photochemical Conversion of [Ru3Ir(μ 3-H)(CO)13] into [Ru3Ir(μ-H)3(CO)12]

  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Electrochemical and photochemical properties of the tetrahedral cluster [Ru3Ir(μ 3-H)(CO)13] were studied in order to prove whether the previously established thermal conversion of this cluster into the hydrogenated derivative [Ru3Ir(μ-H)3(CO)12] also occurs by means of redox or photochemical activation. Two-electron reduction of [Ru3Ir(μ 3-H)(CO)13] results in the loss of CO and concomitant formation of the dianion [Ru3Ir(μ 3-H)(CO)12]2−. The latter reduction product is stable in CH2Cl2 at low temperatures but becomes partly protonated above 283 K into the anion [Ru3Ir(μ-H)2(CO)12] by traces of water. The dianion [Ru3Ir(μ 3-H)(CO)12]2− is also the product of the electrochemical reduction of [Ru3Ir(μ-H)3(CO)12] accompanied by the loss of H2. Stepwise deprotonation of [Ru3Ir(μ-H)3(CO)12] with Et4NOH yields [Ru3Ir(μ-H)2(CO)12] and [Ru3Ir(μ 3-H)(CO)12]2−. Reverse protonation of the anionic clusters can be achieved, e.g., with trifluoromethylsulfonic acid. Thus, the electrochemical conversion of [Ru3Ir(μ 3-H)(CO)13] into [Ru3Ir(μ-H)3(CO)12] is feasible, demanding separate two-electron reduction and protonation steps. Irradiation into the visible absorption band of [Ru3Ir(μ 3-H)(CO)13] in hexane does not induce any significant photochemical conversion. Irradiation of this cluster in the presence of CO with λ irr>340 nm, however, triggers its efficient photofragmentation into reactive unsaturated ruthenium and iridium carbonyl fragments. These fragments are either stabilised by dissolved CO or undergo reclusterification to give homonuclear clusters. Most importantly, in H2-saturated hexane, [Ru3Ir(μ 3-H)(CO)13] converts selectively into the [Ru3Ir(μ-H)3(CO)12] photoproduct. This conversion is particularly efficient at λ irr >340 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. P. Braunstein and J. Rosé, in R. D. Adams and F. A. Cotton (eds.), Catalysis by Di-and Polynuclear Metal Cluster Complexes (Wiley-VCH, New York, 1998), pp. 443-508.

    Google Scholar 

  2. M. A. Aubart, B. D. Chandler, R. A. T. Gould, D. A. Krogstad, M. F. J. Schoondergang, and L. H. Pignolet (1994). Inorg. Chem. 33, 3724.

    Google Scholar 

  3. M. Ichikawa, L.-F. Rao, T. Kimura, and A. Fukuoka (1990). J. Mol. Catal. 62, 15.

    Google Scholar 

  4. R. D. Adams, T. S. Barnard, Z. Li, W. Wu, and J. H. Yamamoto (1994). J. Am. Chem. Soc. 116, 9103.

    Google Scholar 

  5. I. Ojima and Z. Zhang (1988). J. Org. Chem. 53, 4425.

    Google Scholar 

  6. C. S. Garland, M. F. Giles, and J. G. Sunley (1995). Eur. Pat. App. (to BP), 94306506.0.

  7. V. Ferrand, G. Süss-Fink, A. Neels, and H. Stoeckli-Evans (1998). J. Chem. Soc., Dalton Trans. 3825.

  8. G. Süss-Fink, S. Haak, V. Ferrand, and H. Stoeckli-Evans (1997). J. Chem. Soc., Dalton Trans. 3861.

  9. V. V. Pavlishchuk and A. W. Addison (2000). Inorg. Chim. Acta 298, 97.

    Google Scholar 

  10. G. Gritzner and J. Kůta (1984). Pure Appl. Chem. 56, 461.

    Google Scholar 

  11. M. Krejčík, M. Daněk, and F. Hartl (1991). J. Electroanal. Chem., Interfacial Electrochem. 317, 179.

    Google Scholar 

  12. F. Hartl, H. Luyten, H. A. Nieuwenhuis, and G. C. Schoemaker (1994). Appl. Spectrosc. 48, 1522

    Google Scholar 

  13. J. Nijhoff, M. J. Bakker, F. Hartl, G. Freeman, S. L. Ingham, and B. F. G. Johnson (1998). J. Chem. Soc., Dalton Trans. 16, 2625.

    Google Scholar 

  14. M. J. Bakker, T. A. Pakkanen, and F. Hartl (2001). Collect. Czech. Chem. Commun. 66, 1062.

    Google Scholar 

  15. D. E. Fjare, D. G. Keyes, and W. L. Gladfelter (1983). J. Organomet. Chem. 250, 383.

    Google Scholar 

  16. H. J. Kakkonen, M. Ahlgrén, T. A. Pakkanen, and J. Pursiainen (1994). J. Organomet. Chem. 482, 279.

    Google Scholar 

  17. A. Ceriotti, R. Della Pergola, L. Garlaschelli, F. Laschi, M. Manaserro, N. Masciocchi, M. Sansoni, and P. Zanello (1991). Inorg. Chem. 30, 3349.

    Google Scholar 

  18. A. J. Downard, B. H. Robinson, J. Simpson, and A. M. Bond (1987). J. Organomet. Chem. 320, 363.

    Google Scholar 

  19. M. J. Bakker, F. W. Vergeer, F. Hartl, P. Rosa, L. Ricard, P. Le Floch, and M. J. Calhorda (2002). Chem. Eur. J. 8, 1741.

    Google Scholar 

  20. R. J. H. Clark, P. J. Dyson, D. G. Humphrey, and B. F. G. Johnson (1998). Polyhedron 17, 2985.

    Google Scholar 

  21. D. Osella, C. Nervi, M. Ravera, J. Fiedler, and V. V. Strelets (1995). Organometallics 14, 2501.

    Google Scholar 

  22. F.-W. Grevels, W. E. Klotzbücher, J. Schrickel, and K. Schaffner (1994). J. Am. Chem. Soc. 116, 6229.

    Google Scholar 

  23. S. A. R. Knox, J. W. Koepke, M. A. Andrews, and H. D. Kaesz (1975). J. Am. Chem. Soc. 97, 3942.

    Google Scholar 

  24. L. Garlaschelli, S. Martinengo, P. L. Bellon, F. Demartin, M. Manassero, M. Y. Chiang, C. Y. Wei, and R. Bau (1984). J. Am. Chem. Soc. 106, 6664.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank W. Vergeer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vergeer, F.W., Mahabiersing, T., Lozano Diz, E. et al. Electrochemical and Photochemical Conversion of [Ru3Ir(μ 3-H)(CO)13] into [Ru3Ir(μ-H)3(CO)12]. Journal of Cluster Science 15, 47–59 (2004). https://doi.org/10.1023/B:JOCL.0000021252.65477.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JOCL.0000021252.65477.bc

Navigation