Skip to main content
Log in

Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Ceramics possess osteoconductive properties but exhibit no intrinsic osteoinductive capacity. Consequently, they are unable to induce new bone formation in extra osseous sites. In order to develop bone substitutes with osteogenic properties, one promising approach consists of creating hybrid materials by associating in vitro biomaterials with osteoprogenitor cells. With this aim, we have developed a novel strategy of biomimetic modification to enhance osseointegration of hydroxyapatite (HA) implants. RGD-containing peptides displaying different conformations (linear GRGDSPC and cyclo-DfKRG) were grafted onto HA surface by means of a three-step reaction procedure: silanisation with APTES, cross-linking with N-succinimidyl-3-maleimidopropionate and finally immobilisation of peptides thanks to thiol bonding. Whole process was performed in anhydrous conditions to ensure the reproducibility of the chemical functionalisation. The three-step reaction procedure was characterised by high resolution X-ray photoelectron spectroscopy. Efficiency of this biomimetic modification was finally demonstrated by measuring the adhesion of osteoprogenitor cells isolated from HBMSC onto HA surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. ANSELME, B. NOëL, B. FLAUTRE, M. C. BLARY, C. DELECOURT, M. DESCAMPS and P. HARDOUIN, Bone 25 (1999) 51S.

    Google Scholar 

  2. M. JARCHO, Clin. Orthop. 157 (1981) 259.

    Google Scholar 

  3. L. L. HENCH, J. Amer. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  4. H. M. KIM, J. Ceram. Soc. Jpn 109 (2001) S49.

    Google Scholar 

  5. T. KOKUBO, ibid. 99 (1991) 965.

    Google Scholar 

  6. L. L. HENCH, J. Biomed. Mater. Res. 15 (1998) 511.

    Google Scholar 

  7. T. KOKUBO, H. M. KIM and M. KAWASHITA, Biomaterials 24 (2003) 2161.

    Google Scholar 

  8. M. C. PORTé-DURRIEU, C. LABRUGERE, F. VILLARS, F. LEFEBVRE, S. DUTOYA, A. GUETTE, L. BORDENAVE and C. BAQUEY, J. Biomed. Mater. Res. 46 (1999) 368.

    Google Scholar 

  9. S. J. XIAO, M. TEXTOR, N. D. SPENCER and H. SIGRIST, Langmuir 14 (1998) 5507.

    Google Scholar 

  10. A. REZANIA, C. H. THOMAS, A. B. BRANGER, C. M. WATERS and K. E. HEALY, J. Biomed. Mater. Res. 37 (1997) 9.

    Google Scholar 

  11. A. NANCI, J. D. WUEST, L. PERU, P. BRUNET, V. SHARMA, S. ZALZAL and M. D. MCKEE, ibid. 40 (1998) 324.

    Google Scholar 

  12. M. D. PIERSCHBACHER and E. RUOSLAHTI, Nature 309 (1984) 30.

    Google Scholar 

  13. E. RUOSLAHTI and M. D. PIERSCHBACHER, Science 238 (1987) 491.

    Google Scholar 

  14. H. M. KIM, Curr. Opin. Solid St. M. (2004) (in press).

  15. M. KANTLEHNER, P. SCHAFFNER, D. FINSINGER, J. MEYER, A. JONCZYK, B. DIEFENBACH, B. NIES, G. HöLZEMANN, S. GOODMAN and H. KESSLER, Chembiochem 1 (2000) 107.

    Google Scholar 

  16. S. VERRIER, S. PALLU, R. BAREILLE, A. JONCZYK, J. MEYER, M. DARD and J. AMéDéE, Biomaterials 23 (2002) 585.

    Google Scholar 

  17. P. TENGVALL and I. LUNDSTRöM, Clin. Mater. 9 (1992) 115.

    Google Scholar 

  18. B. JESCHKE, J. MEYER, A. JONCZYK, H. KESSLER, P. ADAMIETZ, N. M. MEENEN, M. KANTLERHNER, C. GOEPFERT and B. NIES, Biomaterials 23 (2002) 3455.

    Google Scholar 

  19. J. VILAMITJANA-AMéDéE, R. BAREILLE, F. ROUAIS, A. E. CAPLAN and M. F. HARMAND, In vitro Cell Dev. B 29 (1993) 699.

    Google Scholar 

  20. R. J. MAJESKA, M. PORT and T. A. EINHORN, J. Bone Miner. Res. 8 (1993) 3.

    Google Scholar 

  21. U. LANDEGREN, J. Immunol. Methods. 67 (1984) 379.

    Google Scholar 

  22. F. J. KAHN, Appl. Phys. Lett. 22 (1973) 386.

    Google Scholar 

  23. M. C. PORTé-DURRIEU, F. GUILLEMOT, S. PALLU, C. LABRUGÈRE, B. BROUILLAUD, R. BAREILLE, N. B. BARTHE, M. DARD, J. AMéDéE and C. BAQUEY, Biomaterials 25(19) (2004) (in press).

  24. M. C. PORTé-DURRIEU, C. AYMES-CHODUR, C. VERGNE, N. BETZ and C. BAQUEY, Nucl. Instr. Meth. B 151 (1999) 404.

    Google Scholar 

  25. S. PALLU, R. BAREILLE, M. DARD, H. KESSLER, A. JONCZYK, M. VERNIZEAU and J. AMéDéE-VILAMITJANA, Peptides 24 (2003) 1349.

    Google Scholar 

  26. F. VILLARS, B. GUILLOTIN, T. AMéDéE, S. DUTOYA, L. BORDENAVE, R. BAREILLE and J. AMéDéE, Am. J. Physiol. Cell Physiol. 282 (2002) C775.

    Google Scholar 

  27. D. BRIGGS and M. P. SEAH, “Pratical Surface Analysis”, (2nd Edition) Volume 1 Wiley 1990 p. 657.

    Google Scholar 

  28. D. BRIGGS, “Surface analysis of polymers by XPS and Static SIMS,” Cambridge University Press, p. 212.

  29. J. CHARLIER, V. DETALLE, F. VALIN, C. BUREAU and G. LECAYON, J. Vac. Sci. Technol. A 15 (1997) 353.

    Google Scholar 

  30. L. N. BUI, M. THOMPSON, N. B. MCKEOWN, A. D. ROMASCHIN and P. G. KALMAN, Analyst 118 (1993) 463.

    Google Scholar 

  31. C. D. WAGNER, W. M. RIGGS, D. E. DAVIS and J. F. MOULDER, “Handbook of X-ray Photoelectron Spectroscopy”.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Durrieu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durrieu, M.C., Pallu, S., Guillemot, F. et al. Grafting RGD containing peptides onto hydroxyapatite to promote osteoblastic cells adhesion. Journal of Materials Science: Materials in Medicine 15, 779–786 (2004). https://doi.org/10.1023/B:JMSM.0000032818.09569.d9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000032818.09569.d9

Keywords

Navigation