Skip to main content
Log in

Optimization of the formulation and mechanical properties of starch based partially degradable bone cements

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Previous studies have shown the possibility of developing in-situ polymerizable hydrogels that disclose a range of properties that might allow for their use as bone cements. Their main advantage is to be partially degradable, which is important to allow bone ingrowth (better fixation). In addition, their uptake of water makes them less agressive for the tissues, disclosing better fatigue properties and ideal for release of drugs when in service.This work reports a statistical study of the formulation of partially degradable acrylic bone cements that include on their composition corn starch/cellulose acetate blends (SCA). The aim was to optimize a set of properties (mechanical, swelling/degradation and curing) by changing the values of some parameters such as SCA amount and particle size and molar ratio of the acrylic monomers. Statistical tests demonstrated that the most important parameter was the molar ratio of monomers, with the SCA percentage also playing a role. It was possible to develop formulations with mechanical properties in the range of ASTM specifications and with polymerization temperatures lower than those of commercial acrylic cements. Some formulations were subsequently selected for tensile and dynamic mechanical thermal analysis (DMA) tests, under dry and wet conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Shinzato, T. Nakamura, T. Kokubo and Y. Kitamura, J. Biomed. Mater. Res. 59 (2002) 225.

    Google Scholar 

  2. E. J. Harper, M. Braden and W. J. Bonfield, J. Mater. Sci. Mater. Med. 11 (2000) 491.

    Google Scholar 

  3. S. Morita, K. Furuya, K. Ishihara and N. Nakabayashi, Biomaterials 19 (1998) 1601.

    Google Scholar 

  4. C. Elvira, B. Vaízquez, J. San Romaín, B. Levenfeld, P. Ginebra, X. Gil and J. A. Planell, J. Mater. Sci. Mater. Med. 9 (1998) 679.

    Google Scholar 

  5. M. E. Gomes, A. S. Ribeiro, P. B. Malafaya, R. L. Reis and A. M. Cunha, Biomaterials 22 (2001) 883.

    Google Scholar 

  6. M. E. Gomes, R. L. Reis, A. M. Cunha, C. A. Blitterswijk and J. D. De Bruijn, ibid. 22 (2001) 1911.

    Google Scholar 

  7. M. E. Gomes, J. S. Godinho, D. Tchalamov, A. M. Cunha and R. L. Reis, Mater. Sci. Eng. C 20 (2002) 19.

    Google Scholar 

  8. C. Elvira, J. F. Mano, J. San Romaín and R. L. Reis, Biomaterials 23 (2002) 1955.

    Google Scholar 

  9. P. B. Malafaya, C. Elvira, A. Gallardo, J. San Romaín and R. L. Reis, J. Biomater. Sci. Polym. Ed. 12 (2001) 1227.

    Google Scholar 

  10. R. A. Sousa, G. Kalay, R. L. Reis, A. M. Cunha and M. J. Bevis, J. Appl. Polym. Sci. 77 (2000) 1303.

    Google Scholar 

  11. R. L. Reis, A. M. Cunha and M. J. Bevis, Med. Plast. Biomater. 4 (1997) 46.

    Google Scholar 

  12. C. S. Pereira, A. M. Cunha, R. L. Reis, B. Vaízquez and J. San Romaín, J. Mater. Sci. Mater. Med. 9 (1998) 825.

    Google Scholar 

  13. I. Espigares, C. Elvira, J. F. Mano, B. Vaízquez, J. San Roman and R. L. Reis, Biomaterials 23 (2002) 1883.

    Google Scholar 

  14. D. C. Montgomery, “Design and Analysis of Experiments”, 3rd edn (John Wiley & Sons, Singapore, 1991).

    Google Scholar 

  15. G. E. P. Box, W. G. Hunter and J. S. Hunter, “Statistics for Experimenters” (John Wiley & Sons, New York, 1978).

    Google Scholar 

  16. J. Brandrup, E. H. Immergut and E. A. Grulke (eds), “Polymer Handbook”, 4th edn (Wiley Interscience, New York, 1999).

    Google Scholar 

  17. “Standard Specification for Acrylic Bone Cements. Annual Book of ASTM Standards, v.13.01, Specification F451-86” (ASTM, Philadelphia, 1986).

  18. G. Lewis, J. Biomed. Mater. Res. 38 (1997) 155.

    Google Scholar 

  19. S. Turner, in “Encyclopedia of Materials Science and Technology” (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  20. J. D. Ferry, in “Viscoelastic Properties of Polymers”, 3rd edn (John Wiley & Sons, New York, 1980).

    Google Scholar 

  21. J. F. Mano, R. L. Reis and A. M. Cunha, in “Polymer Based Systems on Tissue Engineering, Replacement and Regeneration”, edited by R. L. REIS and D. COHN (Nato Science Series, Kluwer Academic, Dordrecht, 2002) pp. 139-164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boesel, L.F., Mano, J.F. & Reis, R.L. Optimization of the formulation and mechanical properties of starch based partially degradable bone cements. Journal of Materials Science: Materials in Medicine 15, 73–83 (2004). https://doi.org/10.1023/B:JMSM.0000010100.07715.eb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JMSM.0000010100.07715.eb

Keywords

Navigation