Skip to main content
Log in

Stability and Thermal Expansion of Na+-Conducting Ceramics

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

An impedance spectroscopy study of sodium cation-conducting ceramics, including layered compounds Na0.8Ni0.4Ti0.6O2, Na0.8Fe0.8Ti0.2O2, Na0.8Ni0.6Sb0.4O2 (structural type O3), Na0.68Ni0.34Ti0.66O2 (P2 type), and NASICON-type Na3Si2Zr1.88Y0.12PO11.94 and Na3.2Si2.2Zr1.88Y0.12P0.8O11.94, showed that their transport properties are essentially independent of partial water vapor pressure at temperatures above 420 K. In the low-temperature range, increasing vapor partial pressure from approximately 0 (dry air) up to 0.46 atm. leads to a reversible increase in the conductivity. The sensitivity of studied materials to air humidity is strongly affected by the ceramic microstructure, being favored by larger boundary area and porosity. Maximum stability in wet atmospheres was found for NASICON ceramics, which also exhibit the highest cationic conduction. The average thermal expansion coefficients at 300–1173 K are in the range (13.7–16.0) × 10−6 K−1 for the layered materials and (5.9–6.5) × 10−6 K−1 for NASICON-type ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Paulsen, D. Larcher, and J.R. Dahn, J. Electrochem. Soc., 147, 2862 (2000).

    Google Scholar 

  2. V. Leonhard, H. Erdmann, M. Ilgenstein, K. Cammann, and J. Krause, Sensors and Actuators B, 18/19, 329 (1994).

    Google Scholar 

  3. H. Khireddine, P. Fabry, A. Caneiro, and B. Bochu, Sensors and Actuators B, 40, 223 (1997).

    Google Scholar 

  4. H. Yagi and T. Saiki, Sensors and Actuators B, 5, 135 (1991).

    Google Scholar 

  5. T. Maruyama, S. Sasaky, and Y. Saito, Solid State Ionics, 23, 107 (1987).

    Google Scholar 

  6. T. Kida, Y. Miyachi, K. Shimanoe, and N. Yamazoe, Sensors and Actuators B, 80, 28 (2001).

    Google Scholar 

  7. H. Kohler and H. Schulz, Mater. Res. Bull., 20, 1461 (1985).

    Google Scholar 

  8. C.R. Peters, M. Bettman, J.W. Moore, and M.D. Glick, Acta Cryst. B, 24, 1968 (1982).

    Google Scholar 

  9. A. Maazaz, C. Delmas, C. Fouassier, J.-M. Reau, and P. Hagenmuller, Mater. Res. Bull., 14, 193 (1979).

    Google Scholar 

  10. V.B. Nalbandyan and I.L. Shukaev, Rus. J. Inorg. Chem., 37, 1231 (1992).

    Google Scholar 

  11. E.I. Burmakin and G.Sh. Shekhtman, Electrokhimiya, 21, 752 (1985) (in Russian).

    Google Scholar 

  12. Y.-L. Shin and M.-Y. Yi, Solid State Ionics, 132, 131 (2000).

    Google Scholar 

  13. Y.-L. Shin, M.-H. Park, J.-H. Kwak, H. Namgoong, and O.H. Han, Solid State Ionics, 150, 363 (2002).

    Google Scholar 

  14. Zh. Lu and J.R. Dahn, Chem. Mater., 13, 1252 (2001).

    Google Scholar 

  15. A. Ahmad, T.A. Wheat, A.K. Kuriakose, J.D. Canaday, and A.G. McDonald, Solid State Ionics, 24, 89 (1987).

    Google Scholar 

  16. F. Mauvy, E. Siebert, and P. Fabry, Talanta, 48, 293 (1999).

    Google Scholar 

  17. T. Kida, K. Shimanoe, N. Miura, and N. Yamazoe, Sensors and Actuators B, 75, 179 (2001).

    Google Scholar 

  18. J. Rodrigues-Carvajal, Physica B, 192, 55 (1993).

    Google Scholar 

  19. R.O. Fuentes, F.M.B. Marques, and J.I. Franco, Bol. Soc. Esp. Ceram. Vidrio, 38, 631 (1999).

    Google Scholar 

  20. R.O. Fuentes, F.M. Figueiredo, F.M.B. Marques, and J.I. Franco, J. Europ. Ceram. Soc., 21, 737 (2001).

    Google Scholar 

  21. R.O. Fuentes, F.M. Figueiredo, F.M.B. Marques, and J.I. Franco, Solid State Ionics, 140, 173 (2001).

    Google Scholar 

  22. W.H. Baur, J.R. Dygas, D.H. Whitmore, and J. Faber, Solid State Ionics, 18/19, 935 (1986).

    Google Scholar 

  23. V.V. Kharton, A.A. Yaremchenko, and E.N. Naumovich, J. Solid State Electrochem., 3, 303 (1999).

    Google Scholar 

  24. V.V. Kharton, E.N. Naumovich, A.A. Yaremchenko, and F.M.B. Marques, J. Solid State Electrochem., 5, 160 (2001).

    Google Scholar 

  25. V.N. Chebotin, Physical Chemistry of Solids (Khimiya, Moscow, 1982) (in Russian).

    Google Scholar 

  26. P. Colomban, Solid State Ionics, 21, 97 (1986).

    Google Scholar 

  27. C. Delmas, C. Fouassier, J.-M. Reau, and P. Hagenmuller, Mater. Res. Bull., 11, 1081 (1976).

    Google Scholar 

  28. M.Y. Avdeev, V.B. Nalbandyan, and B.S. Medvedev, Inorg. Mater., 33, 500 (1997).

    Google Scholar 

  29. A.A. Yaremchenko, V.V. Kharton, E.N. Naumovich, and F.M.B. Marques, J Electroceramics, 4, 235 (2000).

    Google Scholar 

  30. R.O. Fuentes, F.M. Figueiredo, F.M.B. Marques, and J.I. Franco, Solid State Ionics, 139, 309 (2001).

    Google Scholar 

  31. Phase Equilibria Diagrams, CD-Rom Database, edited by P. Schenck (The American Ceramic Society, Westerville, OH, 1998).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O.A. Smirnova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smirnova, O., Fuentes, R., Figueiredo, F. et al. Stability and Thermal Expansion of Na+-Conducting Ceramics. Journal of Electroceramics 11, 179–189 (2003). https://doi.org/10.1023/B:JECR.0000026373.56703.b0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JECR.0000026373.56703.b0

Navigation