Skip to main content
Log in

The role of the WO x ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

High surface area carbon-supported platinum-based catalysts, Pt/C, PtWO x /C, PtRu/C and PtRuWO x /C, were prepared via a chemical reduction route using single metal precursor salts. The catalyst particles were found to be in the nanoscale range, and the addition of Ru clearly decreased the particle size. The Ru was found to be partially incorporated into the face centered cubic lattice of Pt and to form a single Ru catalyst component. X-ray diffraction and X-ray photon spectroscopy did not provide evidence for electronic interactions between WO x and Pt as well as WO x and Ru. However, the addition of tungsten to the PtRuWO x /C catalyst resulted in a high degree of catalyst particle agglomeration. Both Ru containing catalysts showed significantly higher activities for the CH3OH oxidation reaction in terms of Pt + Ru mass as well as electroactive Pt + Ru surface area than the Pt/C and PtWO x /C catalysts. The addition of tungsten appeared to mainly result in some ‘physical’ modification of the catalytically active Pt and Ru surface components such as differences in electroactive surface area rather than promotion of the CH3OH oxidation reaction via a true catalytic mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Vielstich, 'Fuel Cells' (John Wiley & Sons, New York, 1970).

    Google Scholar 

  2. K. Scott, W.M. Taama and P. Argyropoulos. J. Power Sources 79 (1999) 43.

    CAS  Google Scholar 

  3. J. O'M. Bockris and H. Wroblowa, J. ElectroAnal. Chem. 7 (1964) 428.

    Google Scholar 

  4. M. Watanabe and S. Motoo, J. ElectroAnal. Chem. 60 (1975) 267.

    CAS  Google Scholar 

  5. A. Haner and P.N. Ross, J. Phys. Chem. 95 (1991) 3740.

    Article  CAS  Google Scholar 

  6. B. Gurau, R. Viswanathan, R. Liu, T.J. Lafrenz, K.L. Ley, E.S. Smotkin, E. Reddington, A. Sapienza, B.C. Chan, T.E. Mallouk and S. Sarangapani, J. Phys. Chem. B 102 (1998) 9997.

    Article  CAS  Google Scholar 

  7. P.K. Shen and A.C.C. Tseung, J. Electrochem. Soc. 141 (1994) 3082.

    CAS  Google Scholar 

  8. A.K. Shukla, M.K. Ravikumar, A.S. Arico, G. Candiano, V. Antonucci, N. Giordano and A. Hamnett, J. Appl. Electrochem. 25 (1995) 528.

    Article  CAS  Google Scholar 

  9. M. Gotz and H. Wendt, Electrochim. Acta 43 (1998) 3637.

    Article  CAS  Google Scholar 

  10. T.D. Jarvi and E.M. Stuve, in J. Lipkowski and P.N. Ross (Eds), 'Electrocatalysis' (Wiley-VCH, New York, 1998), p. 139.

    Google Scholar 

  11. A.J. Bard and L.R. Faulkner, 'Electrochemical Methods, Fundamentals and Applications' (John Wiley & Sons, New York, 1980).

    Google Scholar 

  12. C. Bock, B. MacDougall and Y. LePage, J. Electrochem. Soc., Submitted.

  13. E. Antolini, L. Giorgi, F. Cardellini and E. Passalacqua, J. Solid State Electrochem. 5 (2001) 131.

    Article  CAS  Google Scholar 

  14. Scintag, Inc., 'X-ray Diffraction database' (Diffraction Management System for Windows NT, Scintag Inc., Cupertina, CA, 1997).

    Google Scholar 

  15. B.E. Warren, 'X-ray Diffraction' (Dover Publications, New York, 1990).

    Google Scholar 

  16. H.A. Gasteiger, P.N. Ross, Jr., and E.J. Cairns, Surf. Sci. 293 (1993) 67.

    Article  CAS  Google Scholar 

  17. D.R. Lide, 'CRC Handbook of Chemistry and Physics' (CRC Press, Boston, 71st edn, 1990–1991).

    Google Scholar 

  18. A.S. Arico, P. Creti, P.L. Antonucci, J. Cho, H. Kim and V. Antonucci, Electrochim. Acta 43 (1998) 3719.

    Article  CAS  Google Scholar 

  19. C.D. Wagner, 'Handbook of X-ray Photoelectron Spectroscopy' (Perkin-Elmer Corp., Physical Electronics Division, 1979).

  20. P. Biloen and G.T. Pott, J. Catal. 30 (1973) 169.

    Article  CAS  Google Scholar 

  21. G.M. Bancroft, I. Adams, L.L. Coatsworth, C.D. Bennewitz, J.D. Brown and W.D. Westwood, Anal. Chem. 47 (1975) 586.

    Article  CAS  Google Scholar 

  22. O.S. Alexeev, G.W. Graham, M. Shelef and B.C. Gates, J. Catal. 190 (2000) 157.

    Article  CAS  Google Scholar 

  23. B.E. Conway, H. Angerstein-Kozlowska, W.B.A. Sharp and E. Criddle, Anal. Chem. 45 (1973) 1331.

    Article  CAS  Google Scholar 

  24. F. Richarza, B. Wohlmanna, U. Vogela, H. Hoffschulza and K. Wandelt, Surf. Sci. 335 (1995) 361.

    Google Scholar 

  25. H. Gasteiger, N. Markovic, P. Ross and E. Cairns, J. Phys. Chem. 98 (1994) 617.

    Article  CAS  Google Scholar 

  26. K.A. Friedrich, F. Henglein, U. Stimming and W. Unkauf, Electrochim. Acta 45 (2000) 3283.

    Article  CAS  Google Scholar 

  27. C. Bock and B. MacDougall, J. Electrochem. Soc. 150 (2003) 377.

    Article  Google Scholar 

  28. T.J. Schmidt, H.A. Gasteiger and R.J. Behm, Electrochem. Com. 1 (1999) 1.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Bock, C., MacDougall, B. et al. The role of the WO x ad-component to Pt and PtRu catalysts in the electrochemical CH3OH oxidation reaction. Journal of Applied Electrochemistry 34, 427–438 (2004). https://doi.org/10.1023/B:JACH.0000016628.81571.f4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JACH.0000016628.81571.f4

Navigation