Skip to main content
Log in

Evolution Equations for Plane Cubically Nonlinear Elastic Waves

  • Published:
International Applied Mechanics Aims and scope

Abstract

Consideration is given to the nonlinear theory of elastic waves with cubic nonlinearity. This nonlinearity is separated out, and the interaction of four harmonic waves is studied. The method of slowly varying amplitudes is used. The shortened and evolution equations, the first integrals of these equations (Manley–Rowe relations), and energy balance law for a set of four interacting waves (quadruplet) are derived. The interaction of waves is described using the wavefront reversal scheme

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. A. Viktorov, “Second-order effects for waves in solids,” Akust. Zh., 9, No. 2, 296-298 (1963).

    Google Scholar 

  2. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, Theory of Waves [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  3. A. A. Gedroits and V. A. Krasil'nikov, “Elastic waves of finite amplitude in solids and deviation from Hooke's law,” Zh. Exper. Teor. Fiz., 43, 1592-1594 (1962).

    Google Scholar 

  4. A. A. Gedroits, L. K. Zarembo, and V. A. Krasil'nikov, “Elastic waves of finite amplitude in solids and the anharmonicity of lattice,” Vestn. MGU, Ser. Fiz., 13, 1086-1089 (1963).

    Google Scholar 

  5. A. A. Gedroits, Nonlinear Effects in Propagation of Ultrasonic Waves in Solids [in Russian], PhD Thesis, Moskov. Gos. Univ. (1964).

  6. Z. A. Gol'dberg, “Interaction of plane longitudinal and transverse waves,” Akust. Zh., 6, No. 2, 307-310 (1960).

    Google Scholar 

  7. L. K. Zarembo and V. A. Krasil'nikov, An Introduction to Nonlinear Acoustics [in Russian], Nauka, Moscow (1966).

    Google Scholar 

  8. V. V. Krylov and V. A. Krasil'nikov, An Introduction to Physical Acoustics [in Russian], Nauka, Moscow (1986).

    Google Scholar 

  9. A. I. Lur'e, Nonlinear Theory of Elasticity [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  10. M. I. Rabinovich and D. I. Trubetskov, An Introduction to the Theory of Oscillations and Waves [in Russian], Nauka, Moscow (1984).

    Google Scholar 

  11. J. J. Rushchitsky and S. I. Tsurpal, Waves in Microstructural Materials [in Ukrainian], Inst. Mekh. S. P. Timoshenko, Kiev (1998).

    Google Scholar 

  12. J. D. Achenbach, Wave Propagation in Elastic Solids, Series “Applied Mathematics and Mechanics,” Vol. 16, North-Holland, Amsterdam (1973).

    Google Scholar 

  13. L. Ascione and A. Grimaldi, Elementi di Meccanica del Continuo, Massimo, Napoli (1993).

    Google Scholar 

  14. C. Banfi, Introduzione alla Meccanica dei Continui, CEDAM, Padova (1990).

    Google Scholar 

  15. F. P. Bretherton, “Resonant interaction between waves. The case of discrete oscillations,” J. Fluid Mech., 20, No. 3, 457-479 (1964).

    Google Scholar 

  16. C. Cattani and J. J. Rushchitsky, “Nonlinear acoustic waves in materials: retrospect and some new lines of development,” in: Proc. Ukrainian Math. Congr.-2001. Section 4. Complex Analysis and Potential Flows., Inst. Math., Kyiv (2003), pp. 135-145.

    Google Scholar 

  17. C. Cattani and J. J. Rushchitsky, “Plane waves in cubically nonlinear elastic media,” Int. Appl. Mech., 38, No. 11, 1361-1365 (2002).

    Google Scholar 

  18. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear elastic waves: wave equations and methods of analysis,” Int. Appl. Mech., 39, No. 10, 1115-1145 (2003).

    Google Scholar 

  19. C. Cattani and J. J. Rushchitsky, “Cubically nonlinear versus quadratically nonlinear elastic waves: Main wave effects,” Int. Appl. Mech., 39, No. 12, 1361-1399 (2003).

    Google Scholar 

  20. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies [in Russian], Springer-Verlag, Berlin (1999).

    Google Scholar 

  21. J. A. Hudson, The Excitation and Propagation of Elastic Waves, Cambridge Univ. Press, Cambridge (1980).

    Google Scholar 

  22. G. L. Jones and D. R. Kobett, “Interaction of elastic waves in an isotropic solid,” J. Acoust. Soc. Amer., 35, No. 3, 5-10 (1963).

    Google Scholar 

  23. H. Kroger, “Electron-stimulated piezoelectric nonlinear acoustic effect in CdS,” Appl. Phys. Letters, 4, No. 11, 190-192 (1964).

    Google Scholar 

  24. J. Lighthill, Waves in Fluids, Cambridge Univ. Press, Cambridge (1978).

    Google Scholar 

  25. K. Magnus, Schwingungen. Eine Einführung in die theoretische Behandlung von Schwingungsproblemen, Teubner, Stuttgart (1976).

    Google Scholar 

  26. F. D. Murnaghan, Finite Deformation in an Elastic Solid, John Wiley, New York (1951).

    Google Scholar 

  27. W. Nowacki, Teoria SprêHystooeæi, PWN, Warsaw (1970).

    Google Scholar 

  28. F. R. Rollins, “Interaction of ultrasonic waves in solid media,” Appl. Phys. Letters, 3, No. 2, 147-148 (1963).

    Google Scholar 

  29. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Reviews,52, No. 2, 34-74 (1999).

    Google Scholar 

  30. J. J. Rushchitsky, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586-614 (2000).

    Google Scholar 

  31. J. J. Rushchitsky and C. Cattani, “Generation of the third harmonics by plane waves in Murnaghan materials,” Int. Appl. Mech., 38, No. 12, 1482-1487 (2002).

    Google Scholar 

  32. C. Cattani and J. J. Rushchitsky, “The subharmonic resonance and second harmonic of a plane wave in nonlinearly elastic bodies,” Int. Appl. Mech., 39, No. 1, 93-98 (2003).

    Google Scholar 

  33. J. J. Rushchitsky and C. Cattani, “The third harmonics generation and wave quadruplets,” in: Abstracts of the GAMM Annual Conf., Padua, Italy (2003), p. 234.

    Google Scholar 

  34. C. Cattani, J. J. Rushchitsky, and S. V. Sinchilo, “Propagation of the energy of nonlinearly elastic plane waves,” Int. Appl. Mech., 39, No. 5, 583-586 (2003).

    Google Scholar 

  35. C. Cattani and J. J. Rushchitsky, “Solitary elastic waves and elastic wavelets,” Int. Appl. Mech., 39, No. 6, 741-752 (2003).

    Google Scholar 

  36. Y. R. Shen, The Principles of Nonlinear Optics, John Wiley, New York (1984).

    Google Scholar 

  37. R. T. Smith, “Stress-induced anisotropy in solids-the acousto-elastic effect,” Ultrasonics, 1, 135-142 (1963).

    Google Scholar 

  38. A. Yariv, Quantum Electronics, John Wiley, New York (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitsky, J.J., Cattani, C. Evolution Equations for Plane Cubically Nonlinear Elastic Waves. International Applied Mechanics 40, 70–76 (2004). https://doi.org/10.1023/B:INAM.0000023812.41455.63

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:INAM.0000023812.41455.63

Navigation