Skip to main content
Log in

High Temperature Transport Properties of Dilute Nitrogen Atoms

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Calculations of the transport coefficients viscosity and thermal conductivity and the diffusion collision cross section of nitrogen atoms have been carried out as a function of temperature. The dilute gas transport properties of nitrogen atoms depend only on the interactions between two nitrogen atoms along various electronic potential energy curves. The results presented here include contributions from 16 potential energy curves, four of which dissociate to two ground-state nitrogen atoms with the others also dissociating to two nitrogen atoms, at least one of which is in an excited electronic state. Thirteen of the potential energy curves are represented by the Hulburt–Hirschfeleder potential which is the best general purpose atom–atom potential. This potential depends only on the experimental spectroscopic constants and not on any adjustable parameters. Where spectroscopic constants are unavailable, fits of the Hulburt–Hirschfelder potential to ab initio quantum mechanical results are used for two states and a fit of the Morse potential is used for the other state. The results presented here should be especially useful under conditions where nitrogen atoms are at high temperatures, such as during Space Shuttle re-entry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J.M. Wallace and P.V. Hobbs, Atmospheric Science (Academic Press, New York, 1977), Chap.9.

    Google Scholar 

  2. J.L. Shinn, J.N. Moss, and A.L. Simmonds, in Progress in Astronautics and Aeronautics:Entry Vehicle Heating and Thermal Protection Systems;Space Shuttle, Solar Starprobe, Jupiter Galileo Probe, Vol.85, P.E. Bauer and H.E. Collicott, eds.(AIAA, New York, 1983), pp.149–180.

    Google Scholar 

  3. T.B. Read, in Advances in High Temperature Chemistry, Vol.1, L.Eyring, ed.(Academic Press, New York, 1967), p.260.

    Google Scholar 

  4. P.C. Malte and D.P. Rees, in Pulverized-Coal Combustion and Gasi cation, L.D.Smoot and D.T.Pratt, eds. (Plenum, New York, 1971), p.183.

    Google Scholar 

  5. P.W. Schreiber, A.M. Hunter, and K.R. Benedetto, Phys.Fluids 14:2696 (1971).

    Google Scholar 

  6. P.W. Schreiber, A.M. Hunter, and K.R. Benedetto, AIAA J. 10:670 (1972).

    Google Scholar 

  7. W. Hermann and E. Schade, Z.Phys. 233:333 (1970).

    Google Scholar 

  8. J.C. Morris, R.P. Rudis, and J.M. Yos, Phys.Fluids 13:608 (1970).

    Google Scholar 

  9. E.I. Asinovsky, E.I. Kirillin, E.P. Pakhomov, and V.I. Shabashov, Proc.IEEE 59:592 (1971).

    Google Scholar 

  10. J.O. Hirschfelder, C.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954), Chap.8.

    Google Scholar 

  11. E.A. Mason and L. Monchick, J.Chem.Phys. 36:1622 (1962).

    Google Scholar 

  12. J.T. Vanderslice, J.T.S. Weissman, E.A. Mason, and R.J. Fallon, Phys.Fluids 5:155 (1962).

    Google Scholar 

  13. J.T. Vanderslice, E.A. Mason, and E.R. Lippincott, J.Chem.Phys. 30:129 (1959).

    Google Scholar 

  14. K.P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV.Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), pp.412–425.

    Google Scholar 

  15. M. Krauss and D.B. Neumann, Mol.Phys. 32:101 (1976).

    Google Scholar 

  16. R.F. Ferrante and W.C. Stwalley, J.Chem.Phys. 78:3107 (1983).

    Google Scholar 

  17. H.M. Hulburt and J.O. Hirschfelder, J.Chem.Phys. 9:61 (1941).

    Google Scholar 

  18. H.M. Hulburt and J.O. Hirschfelder, J.Chem.Phys. 35:1901 (1961).

    Google Scholar 

  19. J.C. Rainwater, P.M. Holland, and L. Biolsi, J.Chem.Phys. 77:434 (1982).

    Google Scholar 

  20. J.C. Rainwater, L. Biolsi, K.J. Biolsi, and P.M. Holland, J.Chem.Phys. 79:1462 (1983).

    Google Scholar 

  21. D. Steele, E.R. Lippincott, and J.T. Vanderslice, Rev.Mod.Phys. 34:239 (1962).

    Google Scholar 

  22. J.T. Vanderslice, E.A. Mason, and W.G. Maisch, J.Chem.Phys. 32:515 (1960).

    Google Scholar 

  23. P.H. Krupenie, J.Phys.Chem.Ref.Data 1:423 (1972).

    Google Scholar 

  24. G.C. Lie and E. Clementi, J.Chem.Phys. 60:1288 (1974).

    Google Scholar 

  25. G. Das and A.C. Wahl, J.Chem.Phys. 44:87 (1966).

    Google Scholar 

  26. A. Lofthus and P.H. Krupenie, J.Phys.Chem.Ref.Data 6:113 (1977).

    Google Scholar 

  27. J.T. Vanderslice, E.A. Mason, W.G. Maisch, and E.R. Lippincott, J.Chem.Phys. 33:614 (1960).

    Google Scholar 

  28. L. Biolsi and P.M. Holland, in Progress in Astronautics and Aeronautics:Thermophysical Aspects of Re-entry Flows., Vol.103, J.N.Moss and C.D.Scott, eds. (AIAA, New York, 1986), pp.261–278.

    Google Scholar 

  29. L. Biolsi, J.C. Rainwater, and P.M. Holland, J.Chem.Phys. 77:448 (1982).

    Google Scholar 

  30. G. Herzberg, Molecular Spectra and Molecular Structure.I.Spectra of Diatomic Molecules (Van Nostrand, New York, 1950), pp.425–430.

    Google Scholar 

  31. R.S. Mulliken, J.Phys. Chem. 41:5 (1937).

    Google Scholar 

  32. J.C. Brown and F.A. Matsen, Adv.Chem.Phys. 23:161 (1973).

    Google Scholar 

  33. P.F. Fougere and R.K. Nesbet, J.Chem.Phys. 44:285 (1966).

    Google Scholar 

  34. R. Phair, L. Biolsi, and P.M. Holland, Int.J.Thermophys. 11:201 (1990).

    Google Scholar 

  35. E.A. Mason, J.T. Vanderslice, and J.M. Yos, Phys.Fluids 6:688 (1959).

    Google Scholar 

  36. C. Nyeland and E.A. Mason, Phys.Fluids 10:985 (1967).

    Google Scholar 

  37. M. Capitelli and R.S. Devoto, Phys.Fluids 16:1835 (1973).

    Google Scholar 

  38. D.A. McQuarrie and J.D. Simon, Physical Chemistry:A Molecular Approach (University Science Books, Sausalito, California, 1997), pp.733–737.

    Google Scholar 

  39. J.M. Yos, Tech.Memo.RAD-TM-63-7 (Avco Corp., Boston, 1963).

    Google Scholar 

  40. K.S. Yun and E.A. Mason, Phys.Fluids 5:380 (1962).

    Google Scholar 

  41. S.J. Cubley and E.A. Mason, Phys.Fluids 18:1109 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biolsi, L., Holland, P.M. High Temperature Transport Properties of Dilute Nitrogen Atoms. International Journal of Thermophysics 25, 1063–1073 (2004). https://doi.org/10.1023/B:IJOT.0000038500.87809.4d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:IJOT.0000038500.87809.4d

Navigation