Skip to main content
Log in

On the Anistropy of the Speed of Light on a Rotating Platform

  • Published:
Foundations of Physics Letters

Abstract

The paper discusses a recently posed paradox in relativity concerning the speed of light as measured by an observer on board a rotating turn-table. The counter-intuitive problem put forward by F. Selleri concerns the theoretical prediction of an anisotropy in the speed of light in a reference frame comoving with the edge of a rotatiing disc even in the limit of zero acceleration. The paradox not only challenges the internal consistency of the special relativity theory but also undermines the basic tenet of the conventionality of simultaneity thesis of relativity. The present paper resolves the issue in a novel way by recasting the original paradox in the Galilean world and thereby revealing, in a subtle way, the weak points of the reasonings leading to the fallacy. As a background the standard and the non-standard synchronies in the relativistic as well as in the Galilean world are discussed. In passing, this novel approach also clarifies (contrary to often made assertions in the literature) that the so-called “desynchronization” of clocks cannot be regarded as the root cause of the Sagnac effect. Finally in spite of the flaw in the reasonings leading to the paradox Selleri's observation regarding the superiority of the absolute synchrony over the standard one for a rotation observer has been upheld.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. Selleri, Found. Phys. Lett. 10, 73–83 (1997).

    Article  MathSciNet  Google Scholar 

  2. F. Selleri, Open questions in Relativistic Physics, F. Selleri, ed. (Apeiron, Montreal, 1998), pp. 69–80.

    Google Scholar 

  3. M. G. Sagnac, C. R. Acad. Sci. 157, 708–710 (1913).

    Google Scholar 

  4. E. J. Post, Rev. Mod. Phys. 39, 475–493 (1967).

    Article  ADS  Google Scholar 

  5. R. D. Klauber, Found. Phys. Lett. 11, 405–444 (1998).

    Article  MathSciNet  Google Scholar 

  6. G. Rizzi and A. Tartaglia, Found. Phys. 28, 1663–1683 (1998).

    Article  MathSciNet  Google Scholar 

  7. A. Tartaglia, Found. Phys. Lett. 12(1), 17–28 (1999).

    Article  MathSciNet  Google Scholar 

  8. G. Rizzi and A. Tartglia, Found. Phys. Lett. 12(2), 179–186 (1999).

    Article  MathSciNet  Google Scholar 

  9. T. Budden, Found. Phys. Lett. 11, 4 (1998).

    Article  MathSciNet  Google Scholar 

  10. E. Minguzzi Found. Phys. Lett. 15(2), 153–169, April 2002.

    Article  MathSciNet  Google Scholar 

  11. G. Rizzi and A. Serafini, in Relativity in Rotating Frames, G. Rizzi and M. I. Ruggiero, eds. (Kluwer Academic, Dordrecht, 2004).

    Chapter  Google Scholar 

  12. R. Klauber, in Relativity in Rotating Frames, G. Rizzi and M. L. Ruggiero, eds. (Kluwer Academic, Dordrecht, 2004).

    Google Scholar 

  13. S. K. Ghosal, Biplab Raychaudhuri, Anjan Kumar Chowdhuri and Minakshi Sarker, Found. Phys. 33(6), 981–1001 (2003).

    Article  MathSciNet  Google Scholar 

  14. A. Tartaglia and M. L. Ruggiero, “Sagnac effect and pure geometry,” gr-qc/0401005vl 5 Jan 2004.

  15. R. Wang, Yi Zheng, Aiping Yao, and D. Langley, Phys. Lett. A 312, 7–10 (2003).

    Article  ADS  Google Scholar 

  16. H. Reichenbach, The Philosophy of Space and Time (Dover, New York, 1958).

    MATH  Google Scholar 

  17. A. Griinbaum, Philosophical Problems of Space and Time, 1st edn. (Knopf, New York, 1963).

    Google Scholar 

  18. R. Anderson, I. Vetharaniam, and G. E. Stedman, Phys. Rep. 295, 93–180 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Winnie, Phil. Sci. 37, 81–99 (1970).

    Article  Google Scholar 

  20. T. Sjodin, Il Nuovo Cimento B 51, 229–245 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  21. S. K. Ghosal, P. Chakraborty, and D. Mukhopadhyay, Europhys. Lett. 15(4), 369–374 (1991).

    Article  ADS  MathSciNet  Google Scholar 

  22. S. K. Ghosal, D. Mukhopadhyay, and Papia Chakraborty, Eur. J. Phys. 15, 21–28 (1994).

    Article  Google Scholar 

  23. F. R. Tangherlini, Nuovo Cimento Suppl. 20, 1–86 (1961).

    MathSciNet  Google Scholar 

  24. S. K. Ghosal, Biplab Raychaudhuri, Anjan Kumar Chowdhuri, and Minakshi Sarker, Found. Phys. Lett. 16(6), 549–563 (2003).

    Article  MathSciNet  Google Scholar 

  25. E. Zahar, Brit. J. Phil. Sci. 28, 195–213 (1977).

    Article  Google Scholar 

  26. S. K. Ghosal, K. K. Nandi, and P. Chakraborty, Z. Naturforsch. 46a, 256–258 (1991).

    ADS  Google Scholar 

  27. D. Dieks Eur. J. Phys. 12, 253–259 (1991).

    Article  Google Scholar 

  28. S. K. Ghosal and Minakshi Sarker, “Cosmologically preferred frame, linear Sagnac effect and absolute synchrony,” in M. C. Duffy, ed., Proceedings, Physical Interpretation of Relativity Theory VI (Supplementary Papers) (1998), pp. 52–64.

  29. J. Anandan, Phys. Rev. D. 24, 338–346 (1981).

    Article  ADS  Google Scholar 

  30. Maria B. Cranor, Elizabeth M. Heider, and Richard H. Price, Am. J. Phys. 68(11), 1016–1020 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  31. F. Selleri, Found. Phys. 26, 641–664 (1996).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosal, S.K., Raychaudhuri, B., Chowdhury, A.K. et al. On the Anistropy of the Speed of Light on a Rotating Platform. Found Phys Lett 17, 457–477 (2004). https://doi.org/10.1023/B:FOPL.0000042698.27763.0b

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:FOPL.0000042698.27763.0b

Navigation