Skip to main content
Log in

Ring-testing and Field-validation of a Terrestrial Model Ecosystem(TME) – An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Organic Matter Breakdown and Soil Fauna Feeding Activity

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Organic matter (OM) decomposition and soil fauna feeding activity were integrated as functional endpoints into ecotoxicological tests with intact-soil-core Terrestrial Model Ecosystems (TMEs). Cellulose filter paper served as standardized OM and was either inserted into the top soil or placed on the soil surface for a period of up to 16 weeks. Faunal feeding activity was assessed by the bait-lamina method. The fungicide carbendazim, applied at six dosages ranging from 0.36 kg/ha to 87.5 kg a.i./ha, served as a model chemical. To validate the results from the TME test, a field study was run in parallel. In TMEs the cellulose paper inserted into the soil was decomposed faster than under field conditions. The carbendazim-induced effects on OM decomposition in TMEs and in the field were comparable and followed a clear dose–response relationship. The calculated EC50 values after 8 weeks of incubation were 9.5, 7.1 and 2.1 kg carbendazim/ha for grassland TMEs, grassland field and arable TMEs, respectively. The feeding activity of the soil fauna showed a large variability. The EC50 values for the effect of carbendazim on bait-lamina consumption ranged between 2.0 and 56 kg a.i./ha. Effects on decomposition were correlated with effects on enchytraeids and earthworms but not with effects on bait-lamina consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Bengtsson, G., Berden, M. and Rundgren, S. (1988). Influence of soil animals and metals on decomposition processes: a microcosm experiment. J. Environ. Qual. 17, 113-9.

    Google Scholar 

  • Beyer, L., Blume, H.-P., Friedrich, F. and Vogt, J. (1992). Der durchschnittliche, langfristige Abbau vergrabener Zellulose in typischen Acker-und Waldbö den der Norddeutschen Tiefebene. Pedobiologia 36, 11-20.

    Google Scholar 

  • Bienkowski, P. (1990). Cellulose decomposition as bioenergetic indicator of soil degradation. Pol. Ecol. Stud. 16, 235-44.

    Google Scholar 

  • Bjørnlund, L., Ekelund, F., Christensen, S., Jacobsen, C.S., Krogh, P.H. and Johnsen, K. (2000). Interactions between saprotrophic fungi, bacteria and protozoa on decomposing wheat roots in soil influenced by the fungicide fenpropimorph (Corbel®): a field study. Soil Biol. Biochem. 32, 967-75.

    Google Scholar 

  • Cadisch, G. and Giller, K.E. (1997). Driven by Nature. Plant Litter Quality and Decomposition. CAB International, Wallingford, UK, 409 pp.

    Google Scholar 

  • Chen, S.-K. and Edwards, C.A. (2001). A microcosm approach to assess the effects of fungicides on soil ecological processes and plant growth: comparisons of two soil types. Soil Biol. Biochem. 33, 1981-91.

    Google Scholar 

  • Cortet, J. and Poinsot-Balaguer, N. (2000). Impact of phytopharmaceutical products on soil microarthropods in an irrigated maize field: the use of the litter bag method. Can. J. Soil Sci. 80, 237-49.

    Google Scholar 

  • Eijsackers, H. and Zehnder, A.J.B. (1990). Litter decomposition: a Russian matriochka doll. Biogeochemistry 11, 153-74.

    Google Scholar 

  • Federschmidt, A. and Römbke, J. (1994). Erfahrungen mit dem Köderstreifen-Test auf zwei fungizidbelasteten Standorten. Braunschw. Naturkdl. Schr. 4, 675-80.

    Google Scholar 

  • Förster, B., Eder, M., Morgan, E. and Knacker, T. (1996). A microcosm study of the effects of chemical stress, earthworms and microorganisms and their interaction upon litter decomposition. Eur. J. Soil Biol. 32, 25-33.

    Google Scholar 

  • Geissen, V. and Brümmer, G. (1999). Decomposition rates and feeding activities of soil fauna in deciduous forest soils in relation to soil chemical parameters following liming and fertilization. Biol. Fertil. Soils 29, 335-42.

    Google Scholar 

  • Gillett, J.W. and Witt, J.M. (1980). Chemical evaluation: projected application of terrestrial microcosm technology. In J.P. Giesy Jr. (ed). Microcosms in Ecological Research, Technical Information Center US Department of Energy; Springfield, Virginia, USA, pp. 1008-33.

    Google Scholar 

  • Gulley, D.D., Boelter, A.M. and Bergman, H.L. (1991). TOXSTAT. (Release 3.3. ed). Laramie: Fish Physiology and Toxicology Laboratory, Department of Zoology and Physiology, University of Wyoming.

    Google Scholar 

  • Haanstra, L., Doelman, P. and Oude Voshaar, J.H. (1985). The use of sigmoidal dose response curves in soil ecotoxicological research. Plant Soil 84, 293-7.

    Google Scholar 

  • Heisler, C. (1994). Vergleich zwischen der biotischen Aktivität nach Von Törne und der Collembolen-Zahl verdichteter Ackerböden. Zool. Beitr. N.F. 35, 19-26.

    Google Scholar 

  • Heisler, C. (1998). Beeinflussung der biologischen Aktivität und Fruchtfolge. Agribiol. Res. 51, 289-97.

    Google Scholar 

  • Heisler, C. and Brunotte, J. (1998). Beurteilung der Bodenbearbeitung mit Pflug und der konservierenden Bodenbearbeitung hinsichtlich der biologischen Aktivität mittels des Köderstreifen-Tests nach Von Törne sowie der Populationsdichten von Collembolen und Raubmilben. Landbauforschung Völkenrode 2, 78-85.

    Google Scholar 

  • Helling, B., Pfeiff, G. and Larink, O. (1998). A comparison of feeding activity of collembolan and enchytraeid in laboratory studies using the bait-lamina test. Appl. Soil Ecol. 7, 207-12.

    Google Scholar 

  • Irmler, U. (1998). Spatial heterogeneity of biotic activity in the soil of a beech wood and consequences for the application of the bait-lamina-test. Pedobiologia 42, 102-8.

    Google Scholar 

  • Kampmann, T. (1994). Entwicklung eines standardisierten Labortests mit Köderstreifen fürökotoxikologische Prüfungen: Erste Vorversuche. Braunschw. Naturkdl. Schr. 4, 681-6.

    Google Scholar 

  • Knacker, T., Van Gestel, C.A.M., Jones, S.E., Soares, A.M.V.M., Schallnaß, H.-J., Förster, B. and Edwards, C.A. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: conceptual approach and study design. Ecotoxicology 13, 9-27.

    PubMed  Google Scholar 

  • Koolhaas, J.E., Van Gestel, C.A.M., Römbke, J., Soares, A.M.V.M. and Jones, S.E. (2004). Ring-testing and fieldvalidation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of the model chemical carbendazim on soil microarthropod communities. Ecotoxicology 13, 75-88.

    PubMed  Google Scholar 

  • Kratz, W. (1998). The bait-lamina test-general aspects, applications and perspectives. Environ. Sci. Pollut. Res. 5, 94-6.

    Google Scholar 

  • Krogh, P.H. (1991). Perturbation of the soil micro arthropod community with the pesticides benomyl and isofenphos. Pedobiologia 35, 71-88.

    Google Scholar 

  • Kula, C. and Römbke, J. (1998). Evaluation of soil ecotoxicity tests with functional endpoints for the risk assessment of plant protection products-state-of-the-art. Environ. Sci. Pollut. Res. 5, 55-60.

    Google Scholar 

  • Kurka, A.-M., Starr, M., Heikinheimo, M. and Salkinoja-Salonen, M. (2000). Decomposition of cellulose strips in relation to climate, litterfall nitrogen, phosphorus and C/N ratio in natural boreal forests. Plant and Soil 219, 91-101.

    Google Scholar 

  • Kurka, A.-M., Starr, M., Karsisto, M. and Salkinoja-Salonen, M. (2001). Relationship between decomposition of cellulose strips and chemical properties of humus layer in natural boreal forests. Plant and Soil 229, 137-46.

    Google Scholar 

  • Larink, O. (1994a). Der Köderstreifen-Test in der Pflanzenschutzmittel-Prüfung. Braunschw. naturkdl. Schr. 4, 671-4.

    Google Scholar 

  • Larink, O. (1994b). Bait lamina as a tool for testing feeding activity of animals in contaminated soils. In Donker, M.H, Eijsackers, H. and Heimbach, F. (eds). Ecotoxicology of Soil Organisms, Boca Raton, Florida, USA: Lewis Publishers, pp. 339-45.

    Google Scholar 

  • Larink, O. and Kratz, W. (1994). Köderstreifen-workshop in Braunschweig-ein Resümee. Braunsch. naturkdl. Schr. 4, 647-51.

    Google Scholar 

  • Martikainen, E., Haimi, J. and Ahtiainen, J. (1998). Effects of dimethoate and benomyl on soil organisms and soil processes-a microcosm study. Appl. Soil Ecol. 9, 381-7.

    Google Scholar 

  • Moser, T., van Gestel, C.A.M., Jones, S.E., Koolhaas, J.E., Rodriguez, J.M.L. and Römbke, J. (2004a). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on enchytraeids. Ecotoxicology 13, 89-103.

    PubMed  Google Scholar 

  • Moser, T., Schallnaß, H.-J., Jones, S.E., Van Gestel, C.A.M., Koolhaas, J.E., Rodrigues, J.M.L. and Römbke, J. (2004b). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on nematodes. Ecotoxicology 13, 61-74.

    PubMed  Google Scholar 

  • Römbke, J., van Gestel, C.A.M., Jones, S.E., Koolhaas, J.E., Rodrigues, J.M.L. and Moser T. (2004b). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on earthworms. Ecotoxicology 13, 105-118.

    PubMed  Google Scholar 

  • Müller, G., Broll, G. and Tarnocai, C. (1999). Biological activity as influenced by microtopography in a cryosolic soil, Baffin Island, Canada. Permafrost Periglacial Processes 10, 279-88.

    Google Scholar 

  • Paulus, R., Römbke, J. and Beck, L. (1999). A comparison of the litterbag-, minicontainer-and bait-lamina-methods in an ecotoxicological field experiment with diflubenzuron and btk. Pedobiologia 43, 120-33.

    Google Scholar 

  • Ruf, A., Römbke, J., Paulus, R. and Beck, L. (1997). Die Wirkung von Dimilin auf Individuen und Populationen von Bodentieren und die biologische Aktivität des Bodens eines Laubwaldes. Mitt. Dtsch. Ges. Allg. Angew. Ent. 11, 211-5.

    Google Scholar 

  • Salminen, J. and Haimi, J. (1997). Effects of pentachlorophenol on soil organisms and decomposition in forest soil. J. Appl. Ecol. 34, 101-10.

    Google Scholar 

  • Schick, H. (1999). Der Celluloseabbautest-Ein funktionales Testverfahren zur Beurteilung der Lebensraumfunktion des Bodens für Bodenorganismen. Braunschw. naturkdl. Schr. 5, 925-34.

    Google Scholar 

  • Schönborn, W. and Dumpert, K. (1990). Effects of pentachloro phenol and 2,4,5-trichlorophenoxyacetic acid on the microflora of the soil in a beech wood. Biol. Fertil. Soils 9, 292-300.

    Google Scholar 

  • Schröder, D. and Gewehr, H. (1977). Stroh-und Zelluloseabbau in verschiedenen Bodentypen. Z. Pflanzenernähr. Bodenk. 140, 273-84.

    Google Scholar 

  • Sheppard, S.C. (1997). Toxicity testing using microcosms. In: Tarradellas, J., Bitton, G. and Rossel, D. (eds). Soil Ecotoxicology, Lewis Publishers, Boca Raton, pp. 345-73.

    Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1969). Biometry. San Francisco: W.H. Freeman.

    Google Scholar 

  • Sorensen, L.H. (1983). Size and persistence of the microbial biomass formed during the humification of glucose, hemicellulose, cellulose, and straw in soils containing different amounts of clay. Plant and Soil 75, 121-30.

    Google Scholar 

  • Sousa, J.P., Rodrigues, J.M.L., Loureiro, S., Soares, A.M.V.M., Jones, S.E., Förster, B. and van Gestel, C.A.M. (2004). Ring-testing and field-validation of a Terrestrial Model Ecosystem (TME)-an instrument for testing potentially harmful substances: effects of carbendazim on soil microbial parameters. Ecotoxicology 13, 43-60.

    PubMed  Google Scholar 

  • Sowerby, A., Blum, H., Gray, T. and Ball, A. (2000). The decomposition of Lolium perenne in soils exposed to elevated CO2: comparisons of mass loss of litter with soil respiration and soil microbial biomass. Soil Biol. Biochem. 32, 1359-66.

    Google Scholar 

  • Swift, M.J., Heal, O.W. and Anderson, J.M. (1979). Decomposition in Terrestrial Ecosystems. Studies in Ecology, Volume 5. Blackwell Scientific Publications, Oxford, London, Edinburgh, Melbourne, 372 pp.

    Google Scholar 

  • Unger, H. (1960). Der Zellulosetest, eine Methode zur Ermittlung der zellulolytischen Aktivität des Bodens in Feldversuchen. Zeitschr. Pflanzenernähr. Düng. Bodenkunde 91, 44-52.

    Google Scholar 

  • Van Wensem, J. (1989). A terrestrial micro-ecosystem for measuring effects of pollutants on isopod-mediated litter decomposition. Hydrobiologia 188/189, 507-16.

    Google Scholar 

  • Velthorst, E.J. (1993). Manual for chemical water analysis. Department of Soil Science and Geology, Agricultural University, Wageningen, The Netherlands.

    Google Scholar 

  • Vink, K. and Van Straalen, N.M. (1999). Effects of benomyl and diazinon on isopod-mediated leaf litter decomposition in microcosms. Pedobiologia 43, 345-59.

    Google Scholar 

  • Von Törne, E. (1990a). Assessing feeding activities of soil-living animals. I. Bait-lamina-test. Pedobiologia 34, 89-101.

    Google Scholar 

  • Von Törne, E. (1990b). Schätzungen von Fressaktivitäten bodenlebender Tiere. II. Mini-Köder-Tests. Pedobiologia 34, 269-79.

    Google Scholar 

  • WHO (1993). Carbendazim. Environmental Health Criteria 149. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organisation, Geneva, Switzerland, pp. 1-125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Förster.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Förster, B., Van Gestel, C.A., Koolhaas, J.E. et al. Ring-testing and Field-validation of a Terrestrial Model Ecosystem(TME) – An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Organic Matter Breakdown and Soil Fauna Feeding Activity. Ecotoxicology 13, 129–141 (2004). https://doi.org/10.1023/B:ECTX.0000012410.99020.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:ECTX.0000012410.99020.97

Navigation