Skip to main content
Log in

Localization of Microtubule-Associated Protein (MAP) 1B in the Postsynaptic Densities of the Rat Cerebral Cortex

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1.Although microtubule-associated protein (MAP) 1B and its phosphorylation have been suggested to be important for synapse formation among cortical neurons, the localization of MAP1B in synapses has not yet been confirmed. In this report, we examine the localization of MAP1B in synaptic regions.

2.The localization of MAP1B was observed by immunohistochemical and electron microscopic techniques using specific antibodies against MAP1B.

3.MAP1B immunoreactivities were widely distributed in the cerebral cortex and were observed in the postsynaptic area but not in presynaptic terminals.

4.These synapses were classified as the asymmetrical type.

5.Only some synapses exhibited MAP1B immunoreactivities. MAP1B-immuno-positive synapses accounted for about half of the total synapses.

6.Such a localization suggests MAP1B's important roles in synaptic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Billups, D., Hanley, J. G., Orme, M., Attwell, D., and Moss, S. J. (2000). GABAC receptor sensitivity is modulated by interaction with MAP1B. J. Neurosci. 20:8643–8650.

    Google Scholar 

  • Bloom, G. S., Luca, F. C., and Vallee, R. B. (1985). Microtubule-associated protein 1B: Identification of a major component of the neuronal cytoskeleton. Proc. Natl. Acad. Sci. U.S.A. 82:5404–5408.

    Google Scholar 

  • Brugg, B., Reddy, D., and Matus, A. (1993). Attenuation of microtubule-associated protein 1B expression by antisense oligodeoxynucleotides inhibits initiation of neurite outgrowth. Neuroscience 52:489–496.

    Google Scholar 

  • Burg, M. A., and Cole, G. J. (1994). Claustrin, an antiadhesive neural keratan sulfate proteoglycan, is structurally related to MAP1B. J. Neurobiol. 25:1–22.

    Google Scholar 

  • Burg, M. A., Lee, J.-A., and Cole, G. J. (1998). An alternatively spliced, 5′-truncated MAP1B isoform is expressed in the developing chick nervous system. J. Mol. Neurosci. 9:177–186.

    Google Scholar 

  • Bush, M. S., Goold, R. G., Moya, F., and Gordon-Weeks, P. R. (1996). An analysis of an axonal gradient of phosphorylated MAP 1B in cultured rat sensory neurons. Eur. J. Neurosci. 8:235–248.

    Google Scholar 

  • Calvert, R., and Anderton, B. H. (1985). A microtubule-associated protein (MAP1) which is expressed at elevated levels during development of the rat cerebellum. EMBO J. 4:1171–1176.

    Google Scholar 

  • González-Billault, C., and Avila, J. (2000). Molecular genetic approaches to microtubule-associated protein function. Histol. Histopathol. 15:1177–1183.

    Google Scholar 

  • Hanley, J. G., Koulen, P., Bedford, F., Gordon-Weeks, P. R., and Moss, S. J. (1999). The protein MAP-1B links GABAC receptors to the cytoskeleton at retinal synapses. Nature 397:66–69.

    Google Scholar 

  • Hummel, T., Krukkert, K., Roos, J., Davis, G., and Klämbt, C. (2000). Drosophila Futsch/22C10 is a MAP1B-like protein required for dendritic and axonal development. Neuron 26:357–370.

    Google Scholar 

  • Kuroda, Y., Ichikawa, M., Muramoto, K., Kobayashi, K., Matsuda, Y., Ogura, A., and Kudo, Y. (1992). Block of synapse formation between cerebral cortical neurons by a protein kinase inhibitor. Neurosci. Lett. 135:255–258.

    Google Scholar 

  • Kutschera, W., Zauner, W., Wiche, G., and Propst, F. (1998). The mouse and rat MAP1B genes: Genomic organization and alternative transcription. Genomics 49:430–436.

    Google Scholar 

  • Lien, L. L., Feener, C. A., Fischbach, N., and Kunkel, L. M. (1994). Cloning of human microtubule-associated protein 1B and the identification of a related gene on chromosome 15. Genomics 22:273–280.

    Google Scholar 

  • Mansfield, S. G., Diaz-Nido, J., Gordon-Weeks, P. R., and Avila, J. (1991). The distribution and phosphorylation of the microtubule-associated protein MAP1B in growth cones. J. Neurocytol. 21:1007–1022.

    Google Scholar 

  • Muramoto, K., Ichikawa, M., Kawahara, M., Kobayashi, K., and Kuroda, Y. (1993). Frequency of synchronous oscillations of neuronal activity increases during development and is correlated to the number of synapses in cultured cortical neuron networks. Neurosci. Lett. 163:163–165.

    Google Scholar 

  • Muramoto, K., Kawakami, S.-I., Kawahara, M., Kobayashi, K., Ichikawa, M., and Kuroda, Y. (1996). MAP1B exists in postsynaptic regions of some synapses in cerebral cortex of adult rat. Soc. Neurosci. Abstr. 22:1951.

    Google Scholar 

  • Muramoto, K., Taniguchi, H., Kawahara, M., Kobayashi, K., Nonomura, Y., and Kuroda, Y. (1994). A substrate of ecto-protein kinase is microtubule-associated protein (MAP) 1B in cortical cell cultures undergoing synaptogenesis. Biochem. Biophys. Res. Commun. 205:1467–1473.

    Google Scholar 

  • Nagashima, K., Nakanishi, S., and Matsuda, Y. (1991). Inhibition of nerve growth factor-induced neurite outgrowth of PC12 cells by a protein kinase inhibitor which does not permeate the cell membrane. FEBS Lett. 293:119–123.

    Google Scholar 

  • Nieuwenhuys, R. (1994). The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat. Embryol. (Berl.) 190:307–337.

    Google Scholar 

  • Nothias, F., Fischer, I., Murray, M., Mirman, S., and Vincent, J.-D. (1996). Expression of a phosphorylated isoform of MAP1B is maintained in adult central nervous system areas that retain capacity for structural plasticity. J. Comp. Neurol. 368:317–334.

    Google Scholar 

  • Pedrotti, B., Francolini, M., Cotelli, F., and Islam, K. (1996). Modulation of microtubule shape in vitro by high molecular weight microtubule associated proteins MAP1A, MAP1B, and MAP2. FEBS Lett. 384(2):147–150.

    Google Scholar 

  • Roos, J., Hummel, T., Ng, N., Klämbt, C., and Davis, G. W. (2000). Drosophila Futsch regulates synaptic microtubule organization and is necessary for synaptic growth. Neuron 26:371–382.

    Google Scholar 

  • Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H., and Hirokawa, N. (1989). Microtubule-associated protein 1B: Molecular structure, localization and phosphorylation-dependent expression in developing neurons. Neuron 3:229–238.

    Google Scholar 

  • Szentagothai, J. (1978). The Ferrier Lecture, 1977. The neuron network of the cerebral cortex: A functional interpretation. Proc. R. Soc. Lond. Ser.: B. Biol. Sci. 201:219–248.

    Google Scholar 

  • Tanaka, Y., Kawahata, K., Nakata, T., and Hirokawa, N. (1992). Chronological expression of microtubule-associated proteins (MAPs) in EC cell P19 after neuronal induction by retinoic acid. Brain Res. 596:269–278.

    Google Scholar 

  • Yamauchi, E., Titani, K., and Taniguchi, H. (1997). Specific binding of acidic phospholipids to microtubule-associated protein MAP1B regulates its interaction with tubulin. J. Biol. Chem. 272:22948–22953.

    Google Scholar 

  • Zervas, M., Edelmann, W., Kucherlapati, R., Wainer, B., and Stanton, P. K. (1995). Impaired maintenance of hippocampal long-term potentiation (LTP) in MAP 1B-deficient mice. Soc. Neurosci. Abstr. 21:1098.

    Google Scholar 

  • Zhang, Y. Q., Bailey, A. M., Matthies, H. J., Renden, R. B., Smith, M. A. Speere, S. D., Rubin, G. M., and Broadie, K. (2001). Drosophilia fragile X-related gene regulated the MAPIB homolog Futsch to control synaptic structure and function. Cell 107:591–603.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyo Muramoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawakami, SI., Muramoto, K., Ichikawa, M. et al. Localization of Microtubule-Associated Protein (MAP) 1B in the Postsynaptic Densities of the Rat Cerebral Cortex. Cell Mol Neurobiol 23, 887–894 (2003). https://doi.org/10.1023/B:CEMN.0000005317.79634.27

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CEMN.0000005317.79634.27

Navigation