Skip to main content
Log in

Effect of Coadsorbed Water on Deep Oxidation Mechanisms: Temperature-Programmed Reactions of Benzene and Hydroxyl on the Pt(111) Surface

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The deep oxidation of benzene by preadsorbed hydroxyl on the Pt(111) surface has been characterized using temperature-programmed reaction spectroscopy. A mechanism for benzene oxidation in the presence of coadsorbed water has been developed based on these experiments. Reaction-limited carbon dioxide and water are formed over the temperature range 330–530 K, indicating oxydehydrogenation and skeletal oxidation are occurring over this temperature range. Oxidation of benzene has been compared on the oxygen-covered Pt(111) surface with and without coadsorbed water. With preadsorbed hydroxyl, the yield of water at low-temperatures is increased, and the yield of carbon dioxide is increased. The temperature ranges for carbon dioxide and water formation above 300 K are increased by 30 K when water is coadsorbed with atomic oxygen to form hydroxyl. These results clearly suggest that hydroxyl enhances oxydehydrogenation below 300 K, which results in the formation of different dehydrogenated intermediates with increased activation energy for oxidation during the reaction. Taken together these kinetic and mechanistic results provide a clear description of the reactivity of hydroxyl during benzene deep oxidation on the Pt(111) surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.M. Thomas and W.J. Thomas, Principles and Practice of Heterogeneous Catalysis (VCH Publishers, Inc., New York, 1997).

    Google Scholar 

  2. K. Sakai and K. Matsumoto, J. Mol. Catal. 67 (1991) 7.

    Google Scholar 

  3. T. Miyake, M. Hamada, Y. Sasaki and M. Oguri, Appl. Catal. A 131 (1995) 33.

    Google Scholar 

  4. C.M. Marks and L.D. Schmidt, Chem. Phys. Lett. 178 (1991) 358.

    Google Scholar 

  5. C.E. Mooney, L.C. Anderson and J.H. Lunsford, J. Phys. Chem. 95 (1991) 6070.

    Google Scholar 

  6. J. Bergeld, B. Kasemo and D.V. Chakarov, Surf. Sci. 495 (2001) L815.

    Google Scholar 

  7. A. Manasilp and E. Gulari, Appl. Catal. B 37 (2002) 17.

    Google Scholar 

  8. X.-Q. Gong, P. Hu and R. Raval, J. Chem. Phys. 119 (2003) 6324.

    Google Scholar 

  9. G.A. Somorjai Introduction to Surface Chemistry and Catalysis (John Wiley &; Sons, Inc., New York, 1994).

    Google Scholar 

  10. G.B. Fisher and B.A. Sexton, Phys. Rev. Lett. 44 (1980) 683.

    Google Scholar 

  11. J.R. Creighton and J.M. White, Surf. Sci. 122 (1982) L648.

    Google Scholar 

  12. K. Bedürftig, S. Völkening, Y. Wang, J. Wintterlin, K. Jacobi and G. Ertl, J. Chem. Phys. 111 (1999) 11147.

    Google Scholar 

  13. A.P. Setsonen, Y. Zhu, K. Bedürftig and H. Over, J. Am. Chem. Soc. 123 (2001) 7347.

    Google Scholar 

  14. M. Chen, S.P. Bates, R.A. van Santen and C.M. Friend, J. Phys. Chem. B 101 (1997) 10051.

    Google Scholar 

  15. M. Nagasaka, I. Nakai, H. Kondoh, T. Ohta and V. Carravetta, Chem. Phys. Lett. 375 (2003) 419.

    Google Scholar 

  16. J.T. Ranney, S.R. Bare and J.L. Gland, Catal. Lett. 48 (1997) 25.

    Google Scholar 

  17. H. Guo and F. Zaera, Surf. Sci. 524 (2003) 1.

    Google Scholar 

  18. S. Lehwald, H. Ibach and J.E. Demuth, Surf. Sci. 78 (1978) 577.

    Google Scholar 

  19. M.-C. Tsai and E.L. Muetterties, J. Am. Chem. Soc. 104 (1982) 2534.

    Google Scholar 

  20. J.A. Horsley, J. Stöhr, A.P. Hitchcock, D.C. Newbury, A.L. Johnson and F. Sette, J. Chem. Phys. 83 (1985) 6099.

    Google Scholar 

  21. J.M. Campbell, S. Seimanides and C.T. Campbell, J. Phys. Chem. 93 (1989) 815.

    Google Scholar 

  22. A. Wander, G. Held, R.Q. Hwang, G.S. Blackman, M.L. Xu, P. de Andres, M.A. Van Hove and G.A. Somorjai, Surf. Sci. 249 (1991) 21.

    Google Scholar 

  23. P.S. Weiss and D.M. Eigler, Phys. Rev. Lett. 71 (1993) 3139.

    Google Scholar 

  24. C. Xu, Y.-L. Tsai and B.E. Koel, J. Phys. Chem. 98 (1994) 585.

    Google Scholar 

  25. S. Haq and D.A. King, J. Phys. Chem. 100 (1996) 16957.

    Google Scholar 

  26. M. Saeys, M.-F. Reyniers, G.B. Marin and M. Neurock, J. Phys. Chem. B 106 (2002) 7489.

    Google Scholar 

  27. A.L. Marsh and J.L. Gland, Surf. Sci. 536 (2003) 145.

    Google Scholar 

  28. A.L. Marsh, D.J. Burnett, D.A. Fischer and J.L. Gland, J. Phys. Chem. B 107 (2003) 12472.

    Google Scholar 

  29. J.L. Gland, B.A. Sexton and G.B. Fisher, Surf. Sci. 95 (1980) 587.

    Google Scholar 

  30. D.M. Haaland, Surf. Sci. 102 (1981) 405.

    Google Scholar 

  31. Y. Suda, Langmuir 4 (1988) 147.

    Google Scholar 

  32. S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami and K. Tanabe, J. Am. Chem. Soc. 122 (2000) 11450.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Gland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marsh, A.L., Gland, J.L. Effect of Coadsorbed Water on Deep Oxidation Mechanisms: Temperature-Programmed Reactions of Benzene and Hydroxyl on the Pt(111) Surface. Catalysis Letters 93, 165–170 (2004). https://doi.org/10.1023/B:CATL.0000017071.15340.46

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000017071.15340.46

Navigation