Skip to main content
Log in

Epistasis in Quantitative Trait Locus Linkage Analysis: Interaction or Main Effect?

  • Published:
Behavior Genetics Aims and scope Submit manuscript

Abstract

This paper explores a two-locus variance components model of quantitative trait locus (QTL) linkage for sib-pairs that incorporates epistasis. For a range of epistatic models the expected variance components and noncentrality parameter per sib-pair can be calculated, to indicate the power to detect epistasis. In QTL linkage analysis, additive and epistatic effects are in fact partially confounded; as a result, variance components under incorrect submodels can be distorted, with two main implications. First, the analysis of a single locus can in fact detect a QTL that has no main effect but interacts epistatically with another (unmeasured) locus. That is, single-locus approaches do not necessarily preclude the detection of purely epistatically interacting loci. Second, because the nonepistatic variance component estimates in submodels can partially absorb epistatic variance when it is not explicitly modeled, power to formally detect epistasis is low.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Cockerham, C. C. (1954). An extension of the concept of partitioning hereditary variance for analysis of covariance among relatives when epistasis is present. Genetics 39:859-882.

    Google Scholar 

  • Culverhouse, R., Suarez, B. K., Lin, J., and Reich, T. (2002). A perspective on epistasis: Limits of models displaying no main effect. Am. J. Hum. Genet. 70:461-471.

    Google Scholar 

  • Eaves, L. J. (1994). Effect of genetic architecture on the power of human linkage studies to resolve the contribution of quantitative trait loci. Heredity 72:175-192.

    Google Scholar 

  • Frankel, W. N., and Schork, N. J. (1996). Who's afraid of epistasis? Nat. Genet. 14:371-373.

    Google Scholar 

  • Gurganus, M. C., Nuzhdin, S. V., Leips, J. W. and Mackay, T. F. C. (1999). High-resolution mapping of quantitative trait loci for sternopleural bristle number in Drosophila melanogaster. Genetics 152:1585-1604.

    Google Scholar 

  • Haseman, J. K., and Elston, R. C. (1972). The investigation of linkage between a quantitative trait and a marker locus. Behav. Genet. 2:3-19.

    Google Scholar 

  • Jansen, R. C. (1996). Complex plant traits: Time for polygenic analysis. Trends Plant Sci. 1:89-94.

    Google Scholar 

  • Kempthorne, O. (1957). An introduction to genetic statistics. New York: Wiley.

    Google Scholar 

  • Leips, J., and Mackay, T. F. C. (2000). Quantitative trait loci for lifespan in Drosophila melanogaster: Interactions with genetic background and larval density. Genetics 155:1773-1788.

    Google Scholar 

  • Li, W., and Reich, J. (2000). A complete enumeration and classification of two-locus disease models. Hum. Hered. 50: 334-349.

    Google Scholar 

  • Mackay, T. F. C. (2001). Quantitative trait loci in Drosophila. Nat. Rev. Genet. 2:11-20.

    Google Scholar 

  • Mather, K. (1974). Non-allelic interactions in continuous variation of randomly breeding populations. Heredity 32:414-419.

    Google Scholar 

  • Mitchell, B. D., Ghosh, S., Schneider, J. L., Birznieks, G., and Blangero, J. (1997). Power of variance component linkage analysis to detect epistasis. Gen. Epidemiol. 14:1017-1022.

    Google Scholar 

  • Neuman, R. J., and Rice, J. P. (1992). Two-locus models of diseases. Genet. Epidemiol. 9:347-365.

    Google Scholar 

  • Risch, N. (1990). Linkage strategies for genetically complex traits. I. Multilocus models. Am. J. Hum. Genet. 46:222-228.

    Google Scholar 

  • Risch, N., Spiker, D., Lotspeich, L., Nouri, N., Hinds, D., Hallmayer, J., Kalaydjieva, L. et al. (1999). A genomic screen of autism: Evidence for a multilocus etiology. Am. J. Hum. Genet. 65: 493-507.

    Google Scholar 

  • Schork, N. J. (1993). Extended multipoint identity-by-descent analysis of human quantitative traits: Efficiency, power, and modelling considerations. Am. J. Hum. Genet. 53:1306-1319.

    Google Scholar 

  • Sham, P. C. (1998). Statistics in human genetics. London: Arnold.

    Google Scholar 

  • Sham, P. C., Cherny, S. S., Purcell, S., and Hewitt, J. K. (2000). Power of linkage versus association analysis of quantitative traits, by use of variance-components models, for sibship data. Am. J. Hum. Genet. 66:1616-1630.

    Google Scholar 

  • Tiwari, H. K., and Elston, R. C. (1997a). Deriving components of genetic variance for multilocus models. Genet. Epidemiol. 14:1131-1136.

    Google Scholar 

  • Tiwari, H. K., and Elston, R. C. (1997b). Linkage of multilocus components of variance to polymorphic markers. Ann. Hum. Genet. 61:253-261.

    Google Scholar 

  • Tiwari, H. K., and Elston, R. C. (1998). Restrictions on components of variance for epistatic models. Theor. Popul. Biol. 54:161-174.

    Google Scholar 

  • van Wezel, T., Stassen, A. P. M., Moen, C. J. A., Hart, A. A. M., van der Valk, M. A., and Demant, P. (1996). Gene interaction and single gene effects in colon tumour suspeptibility in mice. Nat. Genet. 14:468-470.

    Google Scholar 

  • Weber, K., Eisman, R., Morey, L., Patty, A., Sparks, J., Tausek, M., and Zeng, Z.-B. (1999). An analysis of polygenes affecting wing shape on chromosome 3 in Drosophila melanogaster. Genetics 153:773-786.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Purcell, S., Sham, P.C. Epistasis in Quantitative Trait Locus Linkage Analysis: Interaction or Main Effect?. Behav Genet 34, 143–152 (2004). https://doi.org/10.1023/B:BEGE.0000013728.96408.f9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BEGE.0000013728.96408.f9

Navigation