Skip to main content
Log in

Three-Dimensional Laser-Doppler Velocimeter Measurements in Swirling Turbulent Pipe Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The present work is an experimental study of the evolutioncharacteristics of swirl in the flow in a pipe at a moderately highReynolds number and over a wide range of swirl numbers characterisingthe swirl strength. The measurements are done by 3D LDV in a speciallydesigned facility that works on the principle of refractive-indexmatching. Swirl with the well-defined distribution of a constant angularvelocity is introduced into the test section of this facility by a swirlgenerating device in which a tube bundle in the pipe rotates about thepipe axis. The measurements have been processed to yield themean-velocity vector and the Reynolds stress tensor in this flow. Ananalysis of the measured evolution characteristics brings out a dominanteffect of swirl with a solid body rotation as the annihilation ofReynolds shear streses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aeschliman, D.P. and Oberkampf, L., Experimental methodology for computational fluid dynamics code validation. AIAA J. 36 (1998) 733–741.

    Google Scholar 

  2. Alekseenko, S.V., Kuibin, P.A., Okulov, V.L. and Shtork, S.I., Helical vortices in swirl flow. J. Fluid Mech. 382 (1999) 195–243.

    Google Scholar 

  3. Anwer, M. and So, R.M.C., Rotation effects on a fully-developed turbulent pipe flow. Exp. Fluids 8 (1989) 33–40.

    Google Scholar 

  4. Baker, D. and Sayre Jr., C., Decay of swirling turbulent flow of incompressible fluids in long pipes. In: Dowdell, R.B. (ed.), Flow: Its Measurement in Science and Industry, Vol. 1. Instrument Society of America, Pittsburg, PA (1974) pp. 301–312.

    Google Scholar 

  5. Batchelor, G.K., An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1974).

    Google Scholar 

  6. Bradshaw, P., Launder, B.E. and Lumley, J.L., Collaborative testing of turbulence models. ASME, J. Fluids Engrg. 118 (1996) 243–247.

    Google Scholar 

  7. Brown, G.L. and Lopez, J.M., Axisymmetric vortex breakdown, Part 2: Physical mechanisms. J. Fluid Mech. 221 (1990) 553–576.

    Google Scholar 

  8. Budwig, R., Refractive index matching methods for liquid flow investigations. Exp. Fluids 17 (1994) 350–355.

    Google Scholar 

  9. Buntine, J.D. and Saffman, P.G., Inviscid swirling flow and vortex breakdown. Proc. Royal Soc. London A 449 (1995) 139–153.

    Google Scholar 

  10. Cooper, A.J. and Peake, N., Trapped acoustic modes in aeroengine intakes with swirling flow. J. Fluid Mech. 419 (2000) 151–175.

    Google Scholar 

  11. Dirkzwager, M., A new axial cyclone design for fluid-fluid separation. Dissertation, TU Delft, Delft, The Netherlands (1996).

    Google Scholar 

  12. Dolling, D.S., Fifty years of shock-wave/boundary-layer interaction research:What next? AIAA J. 39 (2001) 1517–1531.

    Google Scholar 

  13. Escudier, M., Vortex breakdown: Observations and explanations. Prog. Aerospace Sci. 25 (1988) 189–229.

    Google Scholar 

  14. Faler, J.H. and Leibovich, S., An experimental map of the internal structure of a vortex breakdown. J. Fluid Mech. 86 (1978) 313–335.

    Google Scholar 

  15. Guo, B., Langrish, T.A.G. and Fletcher, D.F., Simulation of turbulent swirl flow in an axisymmetric sudden expansion. AIAA J. 39 (2001) 96–102.

    Google Scholar 

  16. Hu, G.-H., Sun, D.-J. and Yin, X.-Y., A numerical study of dynamics of a temporally evolving swirling jet. Phys. Fluids 13 (2001) 951–965.

    Google Scholar 

  17. Kiel, R., Experimentelle Untersuchung einer Strömung mit beheiztem lokalen Ablösewirbel an einer geraden Wand. Fortschrittberichte VDI, Reihe 7, Nr. 281, VDI Verlag, Düsseldorf (1995).

  18. Kitoh, O., Experimental study of turbulent swirling flow in a straight pipe. J. Fluid Mech. 225 (1991) 445–479.

    Google Scholar 

  19. Kok, J.B.W., Rosendal, F.J.J. and Brouwers, J.J.H., LDA measurements of swirling flows in tubes. In: Bessem, J.M. et al. (eds.), Laser Anemometry Advances and Applications, Proceedings/ SPIE 2052, Proceedings of the Fifth International Conference, Koningshof, Veldhoven, The Netherlands, 23–27 August 1993. SPIE, International Society of Optical Engineering, Bellingham, WA (1993) pp. 721–728.

    Google Scholar 

  20. Leuchter, O., Benoit, J.P., Bertoglio, J.P., and Mathieu, J., Experimental and theoretical investigation of a homogeneous turbulent shear flow. In: Johansson, A.V. and Alfredsson, P.H. (eds.), Advances in Turbulence 3. Springer-Verlag, Berlin (1991) pp. 435–444.

    Google Scholar 

  21. Leuchter, O., Benoit, J.P. and Cambon, C., Homogeneous turbulence subjected to rotationdominated plane distortion. Appl. Sci. Res. 51 (1993) 197–202.

    Google Scholar 

  22. Loiselux, T. and Chomaz, J.-M., Breaking of rotational symmetry in swirling jet experiment. Phys. Fluids 12 (2000) S5 (Gallery of Fluid Motion).

    Google Scholar 

  23. Lopez, J.M., Axisymmetric vortex breakdown, Part 1: Confined swirling flow. J. Fluid Mech. 221 (1990) 533–552.

    Google Scholar 

  24. Lopez, J.M. and Perry, A.D., Axisymmetric vortex breakdown, Part 3: Onset of periodic flow and chaotic advection. J. Fluid Mech. 234 (1992) 449–471.

    Google Scholar 

  25. Marliani, G. and Demmer, T., Three component laser-Doppler velocimetry in internal flows through curved wall ducts. Report 186, Institut für Thermo-und Fluiddynamik, Ruhr University Bochum, Bochum, Germany (2002).

    Google Scholar 

  26. Mattingly, E. and Yeh, T., Effects of pipe elbows and tube bundles on selected types of flow meters. J. Flow Meas. Instr. 2 (1991) 4–13.

    Google Scholar 

  27. Naughton, J.W., Cattafesta III, L.N. and Settles, G.S., An experimental study of compressible turbulent mixing enhancement in swirling jets. J. Fluid Mech. 330 (1997) 271–305.

    Google Scholar 

  28. Parchen, R.R., Decay of swirl in turbulent pipe flows. Ph.D. Thesis, Laboratory of Fluid Dynamics and Heat Transfer, Technische Universiteit Eindhoven (Eindhoven University of Technology), The Netherlands (1993).

    Google Scholar 

  29. Pillow, A.F. and Paull, R., Conically similar viscous flows. J. Fluid Mech. 155 (1985), Part 1: 327–341; Part 2: 343–358; Part 3: 359–379.

    Google Scholar 

  30. Reich, G., Strömung und Wärmeübergang in einem axial rotierenden Rohr. Dr.-Ing. Dissertation, Fachbereich Maschinenbau, Technische Hochschule Darmstadt (1988).

  31. Rocklage-Marliani, G., Dreidimensionale Laser-Doppler-Velozimetrie in turbulenter, drallbehafteter Rohrströmung. Fortschritt-Berichte VDI, Reihe 8, Nr. 776, VDI Verlag, Düsseldorf (1999).

  32. Rusak, Z., Wang, S. and Whiting, C.H., The evolution of a perturbed vortex in a pipe to axisymmetric vortex breakdown. J. Fluid Mech. 366 (1998) 211–237.

    Google Scholar 

  33. Schlichting, H. and Gersten, K., Boundary Layer Theory. Springer-Verlag, Berlin (2000).

    Google Scholar 

  34. Schmidts, M. and Vasanta Ram, V., Turbulence characteristics in pipe flow with swirl. In: Dopazo, C. (ed.), Advances in Turbulence VIII, CIMNE, Barcelona, Spain. CIMNE, International Center for Numerical Methods in Engineering (2000) pp. 325–328.

    Google Scholar 

  35. Shtern, V. and Hussain, F., Instabilities of conical flows causing steady bifurcations. J. Fluid Mech. 366 (1998) 33–85.

    Google Scholar 

  36. Stoots, C., Becker, S., Condie, K., Durst, F. and McEligot, D., A large scale matched index of refraction flow facility for LDA studies around complex geometries. Exp. Fluids 30 (2001) 391–398.

    Google Scholar 

  37. Van Dyke, M., An Album of Fluid Motion. Parabolic Press, Stanford, CA (1982).

    Google Scholar 

  38. Yoshizawa, A., Yokoi, N., Nisizima, S., Itoh, S.-I. and Itoh, K., Variational approach to a turbulent swirling pipe flow with the aid of helicity. Phys. Fluids 13 (2001) 2309–2319.

    Google Scholar 

  39. Wang, S. and Rusak, Z., The dynamics of a swirling flow in a pipe and transition to axisymmetric vortex breakdown. J. Fluid Mech. 340 (1997) 177–223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rocklage-Marliani, G., Schmidts, M. & Vasanta Ram, V.I. Three-Dimensional Laser-Doppler Velocimeter Measurements in Swirling Turbulent Pipe Flow. Flow, Turbulence and Combustion 70, 43–67 (2003). https://doi.org/10.1023/B:APPL.0000004913.82057.81

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:APPL.0000004913.82057.81

Navigation