Skip to main content
Log in

Experimental Simulation of Spin Squeezing by Nuclear Magnetic Resonance

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We report on the experimental simulation of spin squeezing using a liquid-state nuclear magnetic resonance (NMR) quantum information processor. This was done by identifying the energy levels within the symmetric subspace of a system of n spin-1/2 nuclei with the energy levels of the simulated spin-(n/2) system. The results obtained for our simulations of spin-1 and spin-3/2 systems are consistent with earlier theoretical studies of spin squeezing, and illustrate interesting relations between the degree of squeezing and the strength of the correlations among the underlying spin-1/2 particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. H. Chen and M. Kotlarchyk, Interactions of Photons and Neutrons with Matter (World Scientific, Singapore, 1997).

    Google Scholar 

  2. M. O. Scully, Quantum Optics (Cambridge University Press, Cambridge, 1997).

    Google Scholar 

  3. L.-M. Duan, A. Sorensen, J. I. Chirac, and P. Zoller, Phys. Rev. Lett. 85, 3991-3994 (2000).

    Google Scholar 

  4. M. Kitagawa and M. Ueda, Phys. Rev. A 47, 5138-5143 (1993).

    Google Scholar 

  5. A. Sorensen, L.-M. Duan, J. I. Cirac, and P. Zoller, Nature 409, 63-65 (2001).

    Google Scholar 

  6. D. J. Wineland, J. J. Bollinger, W. M. Itano, and F. L. Moore, Phys. Rev. A 46, 6797-6800 (1992).

    Google Scholar 

  7. D. J. Wineland, J. J. Bollinger, W. M. Itano, and D. J. Heinzen, Phys. Rev. A 50, 67-88 (1994).

    Google Scholar 

  8. K. Wodkiewicz, J. Mod. Opt. 34, 941 (1987).

    Google Scholar 

  9. K. Wodkiewicz and J. Eberly, J. Opt. Soc. Am. B 2, 458 (1985).

    Google Scholar 

  10. G. S. Agarwal and R. R. Puri, Phys. Rev. A 41, 3782-3791 (1990).

    Google Scholar 

  11. A. Sorensen and K. Molmer, Phys. Rev. A 83, 2274-2277 (1999).

    Google Scholar 

  12. A. Sorensen and K. Molmer, Phys. Rev. Lett. 83, 2274-2277 (1999).

    Google Scholar 

  13. A. Kuzmich, L. Mandel, and N. P. Bigelow, Phys. Rev. Lett., 85, 1594 (2000).

    Google Scholar 

  14. A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, NJ, 1974).

    Google Scholar 

  15. M. E. Rose, Elementary theory of Angular Momentum (Wiley, 1957, reprinted by Dover, Newyork, 1995).

  16. A. R. Usha Devi, X. Wang, and B. C. Sanders, Quantum Inf. Process. 2, 207-220, (2003).

    Google Scholar 

  17. A. J. Shaka and R. Freeman, J. Magn. Reson. 55, 487-493 (1983).

    Google Scholar 

  18. E. M. Fortunato, M. A. Pravia, N. Boulant, G. Teklemariam, T. F. Havel, and D. G. Cory, J. Chem. Phys. 116, 7599-7606 (2002).

    Google Scholar 

  19. M. A. Pravia, N. Boulant, J. Emerson, A. Farid, E. M. Fortunato, T. F. Havel, R. Martinez, and D. G. Cory. J. Chem. Phys. 119, 9993-10001 (2003).

    Google Scholar 

  20. R. Freeman, Spin Choreography (Oxford University Press, oxford, 1998).

    Google Scholar 

  21. Y. S. Weinstein, M. A. Pravia, E. M. Fortunato, S. Lloyd, and D. G. Cory, Phys. Rev. Lett. 86, 1889-1891 (2001).

    Google Scholar 

  22. T. F. Havel, S. S. Somaroo, C.-H. Tseng, and D. G. Cory, in Proceedings of the Applicable Algebra in Engineering, Communications and Computing, vol. 10, Springer-Verlag, Berlin, 2000, pp. 339-374

    Google Scholar 

  23. R. Laflamme, E. Knill, D. G. Cory, E. M. Fortunato, T. F. Havel, C. Miquel, R. Martinez, C. Negrevergne, G. Ortiz, M. A. Pravia, Y. Sharf, S. Sinha, R. Somma, and L. Viola, Los Alamos Sci. 27, 2-37 (2002).

    Google Scholar 

  24. M. D. Price, T. F. Havel, and D. G. Cory, Phys. D 120, 82-101 (1998).

    Google Scholar 

  25. G. Teklemariam, E. M. Fortunato, M. A. Pravia, T. F. Havel, and D. G. Cory, Phys. Rev. Lett. 86, 5845-5849 (2001).

    Google Scholar 

  26. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    Google Scholar 

  27. R. Laflamme, E. Knill, W. H. Zurek, P. Catasti, and S. Marathan, Phil. Trans. R. Soc. Lond. A 356, 1941-1948 (1998).

    Google Scholar 

  28. C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).

    Google Scholar 

  29. S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022-5025 (1997).

    Google Scholar 

  30. W. K. Wootters, Phys. Rev. Lett. 80, 2245-2248 (1998).

    Google Scholar 

  31. Xiaoguang Wang and K. Molmer, Eur. Phys. J. D 18, 385-391 (2002).

    Google Scholar 

  32. D. A. Meyer and N. R. Wallach, J. Math. Phys. 43, 4273-4278 (2002).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, S., Emerson, J., Boulant, N. et al. Experimental Simulation of Spin Squeezing by Nuclear Magnetic Resonance. Quantum Information Processing 2, 433–448 (2003). https://doi.org/10.1023/B:QINP.0000042202.87144.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:QINP.0000042202.87144.cb

Navigation