Skip to main content
Log in

Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Increasing the zinc content of cereal grains will be important for improving human nutrition. Improved plant zinc efficiency will lead to increased yields when available zinc is limiting plant growth. The aim of our work was to test how the over-expression of zinc transporters in cereals affects plant growth, seed mineral content, and zinc transport rates. Known zinc transporters from Arabidopsis were over-expressed in Hordeum vulgare cv. Golden Promise by means of a ubiquitin promoter. Multiple transgenic lines were obtained, and the locus number and expression levels were verified. Transgenic lines were tested in long-term growth and short-term uptake experiments. Seeds from transgenic lines grown in soil had higher zinc and iron contents than controls. Short-term uptake rates were higher in the transgenic lines after zinc deprivation. Resupply of zinc after a period of deprivation resulted in the rapid decrease in zinc uptake even in transgenic lines in which a zinc transporter gene was constitutively expressed. Similar to processes in yeast and Arabidopsis, we hypothesize that this rapid decrease in zinc transport activity may be caused by the degradation of transporters in response to zinc-sufficient conditions. In the long-term growth experiments, there were no significant differences between transgenic and control lines in leaf zinc content or shoot biomass under zinc-sufficient or -deficient conditions. However, root-to-shoot ratios were higher in the transgenic plants grown under low-zinc conditions; this could impact zinc acquisition under field conditions. Increased seed zinc and iron content by over-expression of a zinc transporter provides a new strategy for increasing the micronutrient content of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aharon, R., Shahak, Y., Wininger, S., Bendov, R., Kapulnik, Y. and Galili, G. 2003. Overexpression of a plasma membrane aquaporin in transgenic tobacco improves plant vigor under favorable growth conditions but not under drought or salt stress. Plant Cell 15: 439–447.

    Article  PubMed  Google Scholar 

  • Assunção, A.G.L., Da Costa Martins, P., De Folter, S., Vooijs, R., Schat, H. and Aarts, M.G.M. 2001. Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24: 217–226.

    Google Scholar 

  • Cakmak, I., Sari, N., Marschner, H., Ekiz, H., Kalayci, M., Yilmaz, A. and Braun, H.J. 1996a. Phytosiderophore release in bread and durum wheat genotypes differing in zinc efficiency. Plant Soil 180: 183–189.

    Google Scholar 

  • Cakmak, I., Yilmaz, A., Kalayci, M., Ekiz, H., Torun, B., Erenoglu, B. and Braun, H.J. 1996b. Zinc deficiency as a critical problem in wheat production in Central Anatolia. Plant Soil 180: 165–172.

    Google Scholar 

  • Christensen, A.H. and Quail, P.H. 1996. Ubiquitin promoterbased vectors for high level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res. 5: 213–218.

    PubMed  Google Scholar 

  • Connolly, E.L., Fett, J.P. and Guerinot, M.L. 2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14: 1347–1357.

    Article  PubMed  Google Scholar 

  • Curie, C., Alonso, J.M., Le Jean, M., Ecker, J.R. and Briat, J.F. 2000. Involvement of NRAMP1 from Arabidopsis thaliana in iron transport. Biochem. J. 347: 749–755.

    Article  PubMed  Google Scholar 

  • Erenoglu, B., Cakmak, I., Marschner, H., Romheld, V., Eker, S., Daghan, H., Kalayci, M. and Ekiz, H. 1996. Phytosiderophore release does not relate well with zinc efficiency in different bread wheat genotypes. J. Plant Nutr. 19: 1569–1580.

    Google Scholar 

  • Gaither, L.A. and Eide, D.J. 2001. Eukaryotic zinc transporters and their regulation. Biometals 14: 251–270.

    Article  PubMed  Google Scholar 

  • Genc, Y., McDonald, G.K. and Graham, R.D. 2002. A soilbased method to screen for zinc efficiency in seedlings and its ability to predict yield responses to zinc deficiency in mature plants. Aust. J. Agric. Res. 53: 409–421.

    Article  Google Scholar 

  • Gitan, R.S. and Eide, D.J. 2000. Zinc-regulated ubiquitin conjugation signals endocytosis of the yeast ZRT1 zinc transporter. Biochem. J. 346(Pt 2): 329–336.

    Article  PubMed  Google Scholar 

  • Gitan, R.S., Luo, H., Rodgers, J., Broderius, M. and Eide, D. 1998. Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation. J. Biol. Chem. 273: 28617–28624.

    Article  PubMed  Google Scholar 

  • Gitan, R.S., Shababi, M., Kramer, M. and Eide, D.J. 2003. A cytosolic domain of the yeast Zrt1 zinc transporter is required for its post-translational inactivation in response to zinc and cadmium. J. Biol. Chem. 278: 39558–39564.

    Article  PubMed  Google Scholar 

  • Graham, R.D., Welch, R.M. and Bouis, H.E. 2001. Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv. Agron. 70: 77–142.

    Article  Google Scholar 

  • Grewal, H.S. and Graham, R.D. 1997. Seed zinc content influences early vegetative growth and zinc uptake in oil seed rape (Brassica napus and Brassica juncea) genotypes on zincdeficient soil. Plant Soil 192: 191–197.

    Article  Google Scholar 

  • Grewal, H.S. and Graham, R.D. 1999. Residual effects of subsoil zinc and oilseed rape genotype on the grain yield and distribution of zinc in wheat. Plant Soil 207: 29–36.

    Article  Google Scholar 

  • Grotz, N., Fox, T., Connolly, E., Park, W., Guerinot, M.L. and Eide, D. 1998. Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc. Natl. Acad. Sci. USA 95: 7220–7224.

    Article  PubMed  Google Scholar 

  • Guerinot, M.L. 2000. The ZIP family of metal transporters. Biochim. Biophys. Acta 1465: 190–198.

    Article  PubMed  Google Scholar 

  • Hacisalihoglu, G., Hart, J.J. and Kochian, L.V. 2001. Highand low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol. 125: 456–463.

    Article  PubMed  Google Scholar 

  • Hacisalihoglu, G., Hart, J.J., Wang, Y.H., Cakmak, I. and Kochian, L.V. 2003. Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol. 131: 595–602.

    Article  PubMed  Google Scholar 

  • Hacisalihoglu, G. and Kochian, L.V. 2003. How do some plant tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol. 159: 341–350.

    Article  Google Scholar 

  • Hambidge, M. 2000. Human zinc deficiency. J. Nutr. 130: 1344S–1349S.

    PubMed  Google Scholar 

  • Hart, J.J., Norvell, W.A., Welch, R.M., Sullivan, L.A. and Kochian, L.V. 1998. Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivars. Plant Physiol. 118: 219–226.

    Article  PubMed  Google Scholar 

  • Hausler, R.E., Schlieben, N.H., Nicolay, P., Fischer, K., Fischer, K.L. and Flugge, U.I. 2000. Control of carbon partitioning and photosynthesis by the triose phosphate/ phosphate translocator in transgenic tobacco plants (Nicotiana tabacum L.). I. Comparative physiological analysis of tobacco plants with antisense repression and overexpression of the triose phosphate/phosphate translocator. Planta 210: 371–382.

    PubMed  Google Scholar 

  • Khan, H.R., McDonald, G.K. and Rengel, Z. 1998. Chickpea genotypes differ in their sensitivity to Zn deficiency. Plant Soil 198: 11–18.

    Article  Google Scholar 

  • Kochian, L.V. and Garvin, D.F. 1999. Agricultural approaches to improving phytonutrient content in plants: an overview. Nutr. Rev. 57: S13–S18.

    PubMed  Google Scholar 

  • Lasat, M.M., Baker, A.J.M. and Kochian, L.V. 1996. Physiological characterisation of root Zn2+ absorption and translocation to shoots in Zn2+ hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol. 112: 1715–1722.

    PubMed  Google Scholar 

  • Lasat, M.M., Pence, N.S., Garvin, D.F., Ebbs, S.D. and Kochian, L.V. 2000. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J. Exp. Bot. 51: 71–79.

    Article  PubMed  Google Scholar 

  • Liu, X.F. and Culotta, V.C. 1999. Post-translational control of Nramp metal transport in yeast: role of metal ions and the BSD2 gene. J. Biol. Chem. 274: 4863–4868.

    Article  PubMed  Google Scholar 

  • Lopez-Bucio, J., Cruz-Ramirez, A. and Herrera-Estrella, L. 2003. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 6: 280–287.

    Article  PubMed  Google Scholar 

  • Lucca, P., Hurrel, R. and Potrykus, I. 2001. Genetic engineering approaches to improve the bioavailability and level of iron in the rice grains. Theor. Appl. Genet. 102: 392–397.

    Article  Google Scholar 

  • Manary, M.J., Hotz, C., Krebs, N.F., Gibson, R.S., Westcott, J.E., Broadhead, R.L. and Hambidge, K.M. 2002. Zinc homeostasis in Malawian children consuming a high-phytate, maize-based diet. Am. J. Clin. Nutr. 75: 1057–1061.

    PubMed  Google Scholar 

  • Maser, P., Thomine, S., Schroeder, J.I., Ward, J.M., Hirschi, K., Sze, H., Talke, I.N., Amtmann, A., Maathuis, F.J.M., Sanders, D., Harper, J.F., Tchieu, J., Gribskov, M., Persans, M.W., Salt, D.E., Kim, S.A. and Guerinot, M.L. 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126: 1646–1667.

    Article  PubMed  Google Scholar 

  • Mitsukawa, N., Okumura, S., Shirano, Y., Sato, S., Kato, T., Harashima, S. and Shibata, D. 1997. Overexpression of an Arabidopsis thaliana high-affinity phosphate transporter gene in tobacco cultured cells enhances cell growth under phosphate-limited conditions. Proc. Natl. Acad. Sci. USA 94: 7098–7102.

    Article  PubMed  Google Scholar 

  • Murray-Kolb, L., Takaiawa, F., Goto, F., Yoshihara, T., Theil, E. and Beard, J. 2002. Transgenic rice is a source of iron for iron-depleted rats. J. Nutr. 132: 957–960.

    PubMed  Google Scholar 

  • Nable, R.O. and Webb, M.J. 1993. Further evidence that zinc is required throughout the root zone for optimal plant growth and development. Plant Soil 150: 247–253.

    Google Scholar 

  • Neumann, G. and Martinoia, E. 2002. Cluster roots-an underground adaptation for survival in extreme environments. Trends Plant Sci. 7: 162–167.

    Article  PubMed  Google Scholar 

  • Ooi, C.E., Rabinovich, E., Dancis, A., Bonifacino, J.S. and Klausner, R.D. 1996. Copper-dependent degradation of the Saccharomyces cerevisiae plasma membrane copper transporter Ctr1p in the apparent absence of endocytosis. EMBO J. 15: 3515–3523.

    PubMed  Google Scholar 

  • Palmiter, R.D., Cole, T.B. and Findley, S.D. 1996. ZnT-2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 15: 1784–1791.

    PubMed  Google Scholar 

  • Pence, N.S., Larsen, P.B., Ebbs, S.D., Letham, D.L.D., Lasat, M.M., Garvin, D.F., Eide, D. and Kochian, L.V. 2000. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA 97: 4956–4960.

    Article  PubMed  Google Scholar 

  • Ramesh, S.A., Shin, R., Eide, D.J. and Schachtman, D.P. 2003. Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol. 133: 126–134.

    Article  PubMed  Google Scholar 

  • Rengel, Z. and Graham, R.D. 1996. Uptake of zinc from chelate buffered nutrient solutions by wheat genotypes differing in zinc efficiency. J. Exp. Bot. 47: 217–226.

    Google Scholar 

  • Rengel, Z. and Graham, R.S. 1995a. Importance of seed Zn content for wheat growth on Zn-deficient soil. I. Grain yield. Plant Soil 173: 267–274.

    Google Scholar 

  • Rengel, Z. and Graham, R.S. 1995b. Importance of seed Zn content for wheat growth on Zn-deficient soil. I. Vegetative growth. Plant Soil 173: 259–266.

    Google Scholar 

  • Rengel, Z., Romheld, V. and Marschner, H. 1998. Uptake of zinc and iron by wheat genotypes differing in tolerance to zinc deficiency. J. Plant Physiol. 152: 433–438.

    Google Scholar 

  • Robinson, D. 1994. The responses of plants to non-uniform supplies of nutrients. New Phytol. 127: 635–674.

    Google Scholar 

  • Sharp, P., Tandy, S., Yamaji, S., Tennant, J., Williams, M. and Srai, S.K.S. 2002. Rapid regulation of divalent metal transporter (DMT1) protein but not mRNA expression by non-haem iron in human intestinal Caco-2 cells. FEBS Lett. 510: 71–76.

    Article  PubMed  Google Scholar 

  • Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15: 309–323.

    Article  PubMed  Google Scholar 

  • Shaul, O., Hilgemann, D.W., de-Almeida-Engler, J., Van Montagu, M., Inzé, D. and Galili, G. 1999. Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J. 18: 3973–3980.

    Article  PubMed  Google Scholar 

  • Streeter, T.C., Rengel, Z. and Graham, R.D. 2001. Genotypic differences in Zn efficiency of Medicago species. Euphytica 120: 281–290.

    Article  Google Scholar 

  • Takahashi, M., Nakanishi, H., Kawasaki, S., Nishizawa, N.K. and Mori, S. 2001. Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes. Nature Biotech. 19: 466–469.

    Article  Google Scholar 

  • Thomine, S., Wang, R., Ward, J.M., Crawford, N.M. and Schroeder, J.I. 2000. Cadmium and iron transport by members of a plant metal transporter family in Arabidopsis with homology to Nramp genes. Proc. Natl. Acad. Sci. USA 97: 4991–4996.

    Article  PubMed  Google Scholar 

  • Tingay, S., McElroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Brettell, R. 1997. Agrobacterium tumefaciens-mediated barley transformation. Plant J. 11: 1369–1376.

    Article  Google Scholar 

  • van der Zaal, B.J., Neuteboom, L.W., Pinas, J.E., Chardonnens, A.N., Schat, H., Verkleij, J.A.C. and Hooykaas, P.J.J. 1999. Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol. 119: 1047–1055.

    Article  PubMed  Google Scholar 

  • Vansuyt, G., Mench, M. and Briat, J.F. 2000. Soil-dependent variability of leaf iron accumulation in transgenic tobacco overexpressing ferritin. Plant Physiol. Biochem. 38: 499–506.

    Article  Google Scholar 

  • Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., Oliveira, M., Goto, F. and Datta, S.K. 2003. Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164: 371–378.

    Article  Google Scholar 

  • Wang, M.B., Li, Z.Y., Matthews, P.R., Upadhyaya, N.M. and Waterhouse, P. 1997. Improved vectors for Agrobacterium tumefaciens-mediated transformation of monocot plants. Acta Hort. 461: 401–407.

    Google Scholar 

  • Wang, M.-B. and Waterhouse, P.M. 1997. A rapid and simple method of assaying plants transformed with Hygromycin or PPT resistance genes. Plant Mol. Biol. Rep. 15: 209–215.

    Article  Google Scholar 

  • Welch, R.M. and Graham, R.D. 1999. A new paradigm for world agriculture: meeting human needs-productive, sustainable, nutritious. Field Crops Res. 60: 1–10.

    Article  Google Scholar 

  • Zhao, H., Butler, E., Rodgers, J., Spizzo, T., Duesterhoeft, S. and Eide, D. 1998. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zincresponsive promoter elements. J. Biol. Chem. 273: 28713–28720.

    Article  PubMed  Google Scholar 

  • Zhao, H. and Eide, D.J. 1996a. The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc limitation. Proc. Natl. Acad. Sci. USA 93: 2454–2458.

    Article  PubMed  Google Scholar 

  • Zhao, H. and Eide, D.J. 1996b. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae. J. Biol. Chem. 271: 23203–23210.

    Article  PubMed  Google Scholar 

  • Zhao, H. and Eide, D.J. 1997. Zap1p, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae. Mol. Cell. Biol. 17: 5044–5052.

    PubMed  Google Scholar 

  • Zimmermann, M.B. and Hurrell, R.F. 2002. Improving iron, zinc and vitamin A nutrition through plant biotechnology. Curr. Opin. Biotechnol. 13: 142–145.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramesh, S.A., Choimes, S. & Schachtman, D.P. Over-Expression of an Arabidopsis Zinc Transporter in Hordeum Vulgare Increases Short-Term Zinc Uptake after Zinc Deprivation and Seed Zinc Content. Plant Mol Biol 54, 373–385 (2004). https://doi.org/10.1023/B:PLAN.0000036370.70912.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PLAN.0000036370.70912.34

Navigation