Skip to main content
Log in

Role of Oxidative Damage in Friedreich's Ataxia

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Plasma malondialdehyde (MDA) levels were raised in Friedreich's ataxia (FRDA) patients. These levels correlated with increasing age and disease duration, suggesting lipid peroxidation increased with disease progression. Using fibroblasts from FRDA patients we observed that GSH levels and aconitase activities were normal, suggesting their antioxidant status was unchanged. When exposed to various agents to increase free radical generation we observed that intracellular superoxide generation induced by paraquat caused enhanced oxidative damage. This correlated with the size of the GAA1 expansion, suggesting decreased frataxin levels may render the cells more vulnerable to mild oxidative stress. More severe oxidative stress induced by hydrogen peroxide caused increased cell death in FRDA fibroblasts but was not significantly different from control cells. We propose that abnormal respiratory chain function and iron accumulation may lead to a progressive increase in oxidative damage, but increased sensitivity to free radicals may not require detectable respiratory chain dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Campuzano, V., Montermini, L., Molto, M. D., Pianese, L., Cossee, M., Cavalcanti, F., Monros, E., Rodius, F., Duclos, F., Monticelli, A., Zara, F., Canizares, J., Kounikova, H., Bidichandani, S. I., Gellera, C., Brice, A., Trouillas, P., De Mchele, G., Filla, A., De Frutos, R., Palau, F., Patel, P. I., Di Donato, S., Mandel, J. L., Cocozza, S., Koenig, M., and Pandolfo, M. 1996. Friedreich's ataxia: Autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 271:1423–1427.

    PubMed  Google Scholar 

  2. Campuzano, V., Montermini, L., Lutz, Y., Cova, L., Hindelang, C., Jiralerspong, S., Trottier, Y., Kish, S. J., Faucheux, B., Trouillas, P., Authier, F. J., Durr, A., Mandel, J. L., Vescovi, A., Pandolfo, M., and Koenig, M. 1997. Frataxin is reduced in Friedreich's ataxia patients and is associated with mitochondrial membranes. Hum. Mol. Genet. 6:1771–1780.

    PubMed  Google Scholar 

  3. Durr, A., Cossee, M., Agid, Y., Campuzano, V., Mignard, C., Penet, C., Mandel, J. L., Brice, A., and Koenig, M. 1996. Clinical and genetic abnormalities in patients with Friedreich's ataxia. N. Engl. J. Med. 335:1169–1175.

    PubMed  Google Scholar 

  4. Babcock, M., de Silva, D., Oaks, R., Davis-Kaplan, S., Jiralerspong, S., Montermini, L., Pandolfo, M., and Kaplan, J. 1997. Regulation of mitochondrial iron accumulation by Yfh1p, a putative homolog of frataxin. Science 276:1709–1712.

    PubMed  Google Scholar 

  5. Koutnikova, H., Campuzano, V., Foury, F., Dollé, P., Cazzalini, O., and Koenig, M. 1997. Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxin. Nat. Genet. 16:345–351.

    PubMed  Google Scholar 

  6. Bradley, J. L., Blake, J. C., Chamberlain, S., Thomas, P. K., Cooper, J. M., and Schapira, A. H. V. 2000. Clinical, biochemical and molecular genetic correlations in Friedreich's ataxia. Hum. Mol. Genet. 9:275–282.

    PubMed  Google Scholar 

  7. Rotig, A., de Lonlay, P., Chretien, D., Foury, F., Koenig, M., Sidi, D., Munnich, A., and Rustin, P. (1997) Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich's ataxia. Nat. Genet. 17:215–217.

    PubMed  Google Scholar 

  8. Puccio, H., Simon, D., Cossée, M., Criqui-Filipe, P., Tiziano, F., Melki, J., Hindelang, C., Matyas, R., Rustin, P., and Koenig, M. 2001. Mouse models for Friedreich's ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27:181–186.

    PubMed  Google Scholar 

  9. Cavadini, P., O'Neill, H. A., Benada, O., and Isaya, G. 2002. Assembly and iron-binding properties of human frataxin, the protein deficient in Friedreich ataxia. Hum. Mol. Genet. 11:217–227.

    PubMed  Google Scholar 

  10. Duby, G., Foury, F., Ramazzotti, A., Hermann, J., and Lutz, T. 2002. A non-essential function for yeast frataxin in iron-sulfur cluster assembly. Hum. Mol. Genet. 11:2635–2643.

    PubMed  Google Scholar 

  11. Schulz, J. B., Dehmer, T., SchÖls, L., Mende, H., Hardt, C., Vorgerd, M., Burk, K., Matson, W., Dichgans, J., Beal, M. F., and Bogdanov, M. B. 2000. Oxidative stress in patients with Friedreich's ataxia. Neurology 55:1719–1721.

    PubMed  Google Scholar 

  12. Emond, M., Lepage, G., Vanasse, M., and Pandolfo, M. 2000. Increased levels of plasma malondialdehyde in Friedreich's ataxia. Neurology 55:1752–1753.

    PubMed  Google Scholar 

  13. Halliwell, B. and Chirico, S. 1993. Lipid peroxidation: Its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57(Suppl):715S–25S.

    PubMed  Google Scholar 

  14. Harding, A. E. 1981. Friedreich's ataxia: A clinical and genetic study of 90 families with an analysis of early diagnosis criteria and intrafamilial clustering of clinical features. Brain 104:589–620.

    PubMed  Google Scholar 

  15. Trouillas, P., Takayanagi, T., Hallett, M., Currier, R. D., Subramony, S. H., Wessel, K., Bryer, A., Diener, H. C., Massaquoi, S., Gomez, C. M., Coutinho, P., Ben Hamida, M., Campanella. G., Filla, A., Schut, L., Timann, D., Honnorat, J., Nighoghossian, N., and Manyam, B. 1997. International cooperative ataxia rating scale for pharmacological assessment of the cerebellar syndrome. J. Neurol. Sci. 145:205–211.

    PubMed  Google Scholar 

  16. Martin, G. M. 1973. Pages 39–43, in Kruse, P. F. Jr, and Patterson, M. K. Jr. (eds.), Tissue Culture Methods and Applications Academic Press, New York.

    Google Scholar 

  17. Gardner, P. R., Nguyen, D. D. H., and White, C. W. 1994. Aconi-tase is a sensitive and critical target of oxygen poisoning in cultured mammalian cells and rat lungs. Proc. Natl. Acad. Sci. USA 91:12248–12252.

    PubMed  Google Scholar 

  18. Cooper, J. M., Petty, R. K., Hayes, D. J., Morgan-Hughes, J. A., and Clark, J. B. 1988. Chronic administration of the oral hypoglycaemic agent diphenyleneiodonium to rats. Biochem. Pharmacol. 37:687–694.

    PubMed  Google Scholar 

  19. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. J. Biol. Chem. 193:265–275.

    PubMed  Google Scholar 

  20. Lodi, R., Cooper, J. M., Bradley, J. L., Manners, D., Styles, P., Taylor, D. J., and Schapira, A. H. V. 1999. Deficit of in vivo mitochondrial ATP production in patients with Friedreich's ataxia. Proc. Natl. Acad. Sci. USA 96:11492–11495.

    PubMed  Google Scholar 

  21. MacEvilly, C. J. and Muller, D. P. R. 1997. Oxidative stress does not appear to be involved in the aetiology of Friedreich's ataxia. Res. Neurol. Neurosci. 11:131–137.

    Google Scholar 

  22. Hasegawa, E., Takeshige, K., Oishi, T., Murai, Y., and Minakami, S. 1990. 1-Methyl-4-phenylpyridinium (MPP+) induces NADH-dependent superoxide formation and enhances NADH-dependent lipid peroxidation in bovine heart submitochondrial particles. Biochem. Biophys. Res. Commun. 170:1049–1055.

    PubMed  Google Scholar 

  23. De Freitas, J. M. and Meneghini, R. 2001. Iron and its sensitive balance in the cell. Mutation Res. 475:153–159.

    PubMed  Google Scholar 

  24. Jiralerspong, S., Ge, B., Hudson, T. J., and Pandolfo, M. 2001. Manganese superoxide dismutase induction by iron is impaired in Friedreich's ataxia cells. FEBS Lett. 509:101–105.

    PubMed  Google Scholar 

  25. Delatycki, M. B., Camakaris, J., Brooks, H., Evans-Whipp, T., Thorburn, D. R., Williamson, R., and Forrest, S. M. 1999. Direct evidence that mitochondrial iron accumulation occurs in Friedreich's ataxia. Ann. Neurol. 45:673–675.

    PubMed  Google Scholar 

  26. Foury, F. and Cazzalini, O. 1997. Deletion of the yeast homologue of the human gene associated with Friedreich's ataxia elicits iron accumulation in mitochondria. FEBS Lett. 411:373–377.

    PubMed  Google Scholar 

  27. Wong, A., Yang, J., Cavadini, P., Gellera, C., Lonnerdal, B., Taroni, F., and Cortopassi, G. 1999. The Friedreich's ataxia mutation confers cellular sensitivity to oxidant stress which is rescued by chelators of iron and calcium and inhibitors of apoptosis. Hum. Mol. Genet. 8:425–430.

    PubMed  Google Scholar 

  28. Shimada, H., Hirai, K., Simamura, E., and Pan, J. 1998. Mitochondrial NADH-quinone oxidoreductase of the outer membrane is responsible for paraquat cytotoxicity in rat livers. Arch. Biochem. Biophys. 351:75–81.

    PubMed  Google Scholar 

  29. Hirai, K., Ikeda, K., and Wang, G. Y. 1992. Paraquat damage of rat liver mitochondria by superoxide production depends on extramitochondrial NADH. Toxicology 72:1–16.

    PubMed  Google Scholar 

  30. Hausalden, A. and Fridovich, I. 1994. Superoxide and peroxynitrite inactivate aconitase, but nitric oxide does not. J. Biol. Chem. 269:29405–29408.

    PubMed  Google Scholar 

  31. Chantrel-Groussard, K., Geromel, V., Puccio, H., Koenig, M., Munnich, A., Rotig, A., and Rustin, P. 2001. Disabled early recruitment of antioxidant defenses in Friedreich's ataxia. Hum. Mol. Genet. 10:2061–2067.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cooper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, J.L., Homayoun, S., Hart, P.E. et al. Role of Oxidative Damage in Friedreich's Ataxia. Neurochem Res 29, 561–567 (2004). https://doi.org/10.1023/B:NERE.0000014826.00881.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:NERE.0000014826.00881.c3

Navigation