Skip to main content
Log in

Oscillations in Large-Scale Cortical Networks: Map-Based Model

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

We develop a new computationally efficient approach for the analysis of complex large-scale neurobiological networks. Its key element is the use of a new phenomenological model of a neuron capable of replicating important spike pattern characteristics and designed in the form of a system of difference equations (a map). We developed a set of map-based models that replicate spiking activity of cortical fast spiking, regular spiking and intrinsically bursting neurons. Interconnected with synaptic currents these model neurons demonstrated responses very similar to those found with Hodgkin-Huxley models and in experiments. We illustrate the efficacy of this approach in simulations of one- and two-dimensional cortical network models consisting of regular spiking neurons and fast spiking interneurons to model sleep and activated states of the thalamocortical system. Our study suggests that map-based models can be widely used for large-scale simulations and that such models are especially useful for tasks where the modeling of specific firing patterns of different cell classes is important.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275: 220–224.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Abarbanel HD, Sejnowski TJ, Laurent G (2001a) Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron. 30: 569–581.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel HD, Sejnowski TJ, Laurent G (2001b) Model of transient oscillatory synchronization in the locust antennal lobe. Neuron. 30: 553–567.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski T (2000) Patterns of spiking-bursting activity in the thalamic reticular nucleus initiate sequences of spindle oscillations in thalamic network. J. Neurophysiol. 84: 1076–1087.

    PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1998) Computational models of thalamocortical augmenting responses. J. Neurosci. 18: 6444–6465.

    PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (1999) Selfsustained rhythmic activity in the thalamic reticular nucleus mediated by depolarizingGABAAreceptor potentials. Nat. Neurosci. 2: 168–174.

    Article  PubMed  Google Scholar 

  • Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2002) Model of thalamocortical slow-wave sleep oscillations and transitions to activated states. J. Neurosci. 22: 8691–8704.

    PubMed  Google Scholar 

  • Calvin WH, Stevens CF (1968) Synaptic noise and other sources of randomness in motoneuron interspike intervals. J. Neurophysiol. 31: 574–587.

    PubMed  Google Scholar 

  • Cang J, Friesen WO (2002) Model for intersegmental coordination of leech swimming: central and sensory mechanisms. J. Neurophysiol. 87: 2760–2769.

    PubMed  Google Scholar 

  • Casti AR, Omurtag A, Sornborger A, Kaplan E, Knight B, Victor J, Sirovich L (2002) A population study of integrate-and-fire-orburst neurons. Neural Comput. 14: 957–986.

    Article  PubMed  Google Scholar 

  • Chagnac-Amitai Y, Connors BW (1989) Horizontal spread of synchronized activity in neocortex and its control byGABA-mediated inhibition. J. Neurophysiol. 61: 747–758.

    PubMed  Google Scholar 

  • Chervin RD, Pierce PA, Connors BW (1988) Periodicity and directionality in the propagation of epileptiform discharges across neocortex. J. Neurophysiol. 60: 1695–1713.

    PubMed  Google Scholar 

  • Connors BW, Gutnick MJ (1990) Intrinsic firing patterns of divers neocortical neurons. Trends Neurosci. 13: 99–104.

    Article  PubMed  Google Scholar 

  • Contreras D, Destexhe A, Sejnowski, TJ, Steriade M (1996). Control of spatiotemporal coherence of a thalamic oscillation by corticothalamic feedback. Science 274: 771–774.

    Article  PubMed  Google Scholar 

  • Corchs S, Deco G (2001) A neurodynamical model for selective visual attention using oscillators. Neural. Netw. 14: 981–990.

    Article  PubMed  Google Scholar 

  • Crook SM, Ermentrout GB, Vanier MC, Bower JM (1997) The role of axonal delay in the synchronization of networks of coupled cortical oscillators. J. Comput. Neurosci. 4: 161–172.

    Article  PubMed  Google Scholar 

  • Delaney KR, Gelperin A, Fee MS, Flores JA, Gervais R, Tank DW, Kleinfeld D (1994) Waves and stimulus-modulated dynamics in an oscillating olfactory network. Proc. Natl. Acad. Sci. USA 91: 669–673.

    PubMed  Google Scholar 

  • Destexhe A, Bal T, McCormick DA, Sejnowski TJ (1996) Ionic mechanisms underlaying synchronized and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76: 2049–2070.

    PubMed  Google Scholar 

  • Destexhe A, Contreras D, Sejnowski TJ, SteriadeM(1994a)Amodel of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72: 803–818.

    PubMed  Google Scholar 

  • Destexhe A, Mainen ZF, Sejnowski TJ (1994b) Synthesis of models for excitable membranes, synaptic transmission and neuromodulation using a common kinetic formalism. J. Comput. Neurosci. 1: 195–230.

    PubMed  Google Scholar 

  • Ermentrout B (1998) Linearization of F-I curves by adaptation. Neural Comput. 10: 1721–1729.

    Article  PubMed  Google Scholar 

  • Ermentrout B, Wang JW, Flores J, Gelperin A (2001) Model for olfactory discrimination and learning in Limax procerebrum incorporating oscillatory dynamics and wave propagation. J. Neurophysiol. 85: 1444–1452.

    PubMed  Google Scholar 

  • Ermentrout GB, Kleinfeld D (2001) Traveling electrical waves in cortex: Insights from phase dynamics and speculation on a computational role. Neuron. 29, 33–44.

    Article  PubMed  Google Scholar 

  • Gais S, Plihal W, Wagner U, Born J (2000) Early sleep triggers memory for early visual discrimination skills. Nat. Neurosci. 3: 1335–1339.

    Article  PubMed  Google Scholar 

  • Galarreta M, Hestrin S (1998) Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex. Nat. Neurosci. 1: 587–594.

    Article  PubMed  Google Scholar 

  • Gestrin G, Masterbroek HAK, Zaagman WH (1980) Stochastic constancy, variability and adaptation of spike generation: Performance of a giantneuron in the visual system of the fly. Biol. Cybern. 38: 31–40.

    Google Scholar 

  • Golomb D (1998) Models of neuronal transient synchrony during propagation of activity through neocortical circuitry. J. Neurophysiol. 79: 1–12.

    PubMed  Google Scholar 

  • Golomb D, Amitai Y (1997) Propagating neuronal discharges in neocortical slices: Computational and experimental study. Journal of Neurophysiology. 78: 1199–1211.

    PubMed  Google Scholar 

  • Golomb D, Ermentrout GB(1999) Continuous and lurching traveling pulses in neuronal networks with delay and spatially decaying connectivity. Proc. Natl. Acad. Sci. USA 96: 13480–13485.

    Article  PubMed  Google Scholar 

  • Golomb D, Ermentrout GB (2001) Bistability in pulse propagation in networks of excitatory and inhibitory populations. Phys. Rev. Lett. 86: 4179–4182.

    Article  PubMed  Google Scholar 

  • Golomb D, Ermentrout GB (2002) Slow excitation supports propagation of slow pulses in networks of excitatory and inhibitory populations. Phys. Rev. E. Stat. Nonlin Soft Matter Phys. 65: 061911.

    PubMed  Google Scholar 

  • Golomb D, Wang XJ, Rinzel J (1994) Synchronization properties of spindle oscillations in a thalamic reticular nucleus model. J. Neurophysiol. 72: 1109–1126.

    PubMed  Google Scholar 

  • Golomb D, Wang X-J, Rinzel J (1996) Propagation of spindle waves in a thalamic slice model. Journal of Neurophysiology. 75: 750–769.

    PubMed  Google Scholar 

  • Golowasch J, Marder E (1992) Ionic currents of the lateral pyloric neuron of the stomatogastric ganglion of the crab. J. Neurophysiol. 67: 318–331.

    PubMed  Google Scholar 

  • Gray CM, McCormick DA (1996) Chattering cells: Superficial pyramidal neurons contributing to the generation of synchronous oscillations in the visual cortex. Science 274: 109–113.

    Article  PubMed  Google Scholar 

  • Gutkin BS, ErmentroutGB(1998) Dynamics of membrane excitability determine interspike interval variability: A link between spike generation mechanisms and cortical spike train statistics. Neural. Comput. 10: 1047–1065.

    Article  PubMed  Google Scholar 

  • Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. Lond. 117: 500–544.

    PubMed  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1996) Synaptic organizations and dynamical properties of weakly connected neural oscillators. II. Learning phase information. Biol. Cybern. 75: 129–135.

    Article  PubMed  Google Scholar 

  • Hoppensteadt FC, Izhikevich EM (1998) Thalamo-cortical interactions modeled by weakly connected oscillators: Could the brain use FM radio principles? Biosystems. 48: 85–94.

    Article  PubMed  Google Scholar 

  • Houweling AR, Bazhenov M, Timofeev I, Grenier F, Steriade M, Sejnowski TJ (2002) Frequency-selective augmenting responses by short-term synaptic depression in cat neocortex. J. Physiol. 542: 599–617.

    Article  PubMed  Google Scholar 

  • IzhikevichEM(2003) Simple model of spiking neurons. IEEE Transactions on Neural Networks. 14: 1569–1572.

    Google Scholar 

  • Izhikevich EM (2004) Which model to use for cortical spiking neurons? IEEE Transactions on Neural Networks (in press).

  • Jahnsen H, Llinás R (1984) Electrophysiological properties of guinea-pig thalamic neurones: An in vitrostudy. Journal of Physiology 349: 205–226.

    PubMed  Google Scholar 

  • Kawahara S, Toda S, Suzuki Y, Watanabe S, Kirino Y (1997) Comparative study on neural oscillation in the procerebrum of the terrestrial slugs Incilaria bilineata and J. Exp. Biol. 200: 1851–1861.

    Google Scholar 

  • Knight BW (1972a) Dynamics of encoding in a population of neurons. J. Gen Physiol. 59: 734–766.

    Article  PubMed  Google Scholar 

  • Knight BW (1972b) The relationship between the firing rate of a single neuron and the level of activity in a population of neurons. Experimental evidence for resonant enhancement in the population response. J. Gen. Physiol. 59: 767–778.

    Article  PubMed  Google Scholar 

  • Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer-Verlag, Berlin-Heidelberg-New York-Tokyo.

    Google Scholar 

  • Longtin A, Doiron B, Bulsara AR (2002) Noise-induced divisive gain control in neuron models. Biosystems. 67: 147–156.

    Article  PubMed  Google Scholar 

  • Lytton WW, Destexhe A, Sejnowski TJ (1996) Control of slow oscillations in the thalamocortical neuron: A computer model. Neuroscience. 70: 673–684.

    Article  PubMed  Google Scholar 

  • Mainen ZF, Sejnowski TJ (1996) Influence of dendritic structure on firing pattern in model neocortical neurons. Nature 382: 363–366.

    Article  PubMed  Google Scholar 

  • Mason A, Larkman A (1990) Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology. J. Neurosci. 10: 1415–1428.

    PubMed  Google Scholar 

  • McCormick DA, Connors BW, Lighthall JW, Prince DA(1985) Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J. Neurophysiol. 54: 782–806.

    PubMed  Google Scholar 

  • Nenadic Z, Ghosh BK, Ulinski P (2003) Propagating waves in visual cortex: A large-scale model of turtle visual cortex. J Comput Neurosci. 14: 161–184.

    Article  PubMed  Google Scholar 

  • Nenadic Z, Ghosh BK, Ulinski PS (2002) Modeling and estimation problems in the turtle visual cortex. IEEE Trans. Biomed. Eng. 49: 753–762.

    Article  PubMed  Google Scholar 

  • Noda H, Adey WR (1970) Firing of neuron pairs in cat association cortex during sleep and wakefulness. J. Neurophysiol. 33: 672–684.

    PubMed  Google Scholar 

  • Pinsky PF, Rinzel J (1994) Intrinsic and network rhythmogenesis in a reduced Traub model for CA3 neurons. J. Comput. Neurosci. 1: 39–60.

    PubMed  Google Scholar 

  • Prechtl JC, Cohen LB, Pesaran B, Mitra PP, Kleinfeld D (1997) Visual stimuli induce waves of electrical activity in turtle cortex. Proc. Natl. Acad. Sci. USA 94: 7621–7626.

    Article  PubMed  Google Scholar 

  • Roelfsema PR, Engel AK, Konig P, SingerW(1997) Visuomotor integration is associated with zero time-lag synchronization among cortical areas. Nature 385: 157–161.

    Article  PubMed  Google Scholar 

  • Rulkov NF (2002) Modeling of spiking-bursting neural behavior using two-dimensional map. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65: 041922.

    PubMed  Google Scholar 

  • Shilnikov AL, Rulkov NF (2003), Origin of chaos in a twodimensional map modeling spiking-bursting neural activity. Int. J. Bif. and Chaos. 13: 3325–3340.

    Article  Google Scholar 

  • Sigvardt KA, Miller WL (1998) Analysis and modeling of the locomotor central pattern generator as a network of coupled oscillators. Ann. NY Acad. Sci. 86: 250–265.

    Google Scholar 

  • Smith GD, Cox CL, Sherman SM, Rinzel J (2000). Fourier analysis of sinusoidally driven thalamocortical relay neurons and a minimal integrate-and-fire-or-burst model. J. Neurophysiol. 83: 588–610.

    PubMed  Google Scholar 

  • Smith GD, Sherman SM (2002) Detectability of excitatory versus inhibitory drive in an integrate-and-fire-or-burst thalamocortical relay neuron model. J. Neurosci. 22: 10242–10250.

    PubMed  Google Scholar 

  • Softky WR, Koch C 1993. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13: 334–350.

    PubMed  Google Scholar 

  • Stein RB (1967) The frequency of nerve action potentials generated by applied currents. Proc. R. Soc. Lond B. Biol. Sci. 167: 64–86.

    PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993a) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685.

    PubMed  Google Scholar 

  • Steriade M, Nunez A, Amzica F (1993b) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: Depolarizing and hyperpolarizing components. J. Neurosci. 13: 3252–3265.

    PubMed  Google Scholar 

  • Steriade M, Timofeev I, Durmuller N, Grenier, F (1998) Dynamic properties of corticothalamic neurons and local cortical interneurons generating fast rhythmic (30-40 Hz) spike bursts. J. Neurophysiol. 79: 483–490.

    PubMed  Google Scholar 

  • Steriade M, Timofeev I, Grenier F (2001) Natural waking and sleep states: A view from inside neocortical neurons. J. Neurophysiol. 85: 1969–1985.

    PubMed  Google Scholar 

  • Stickgold R, James L, Hobson JA(2000)Visual discrimination learning requires sleep after training. Nat. Neurosci. 3: 1237–1238.

    Article  PubMed  Google Scholar 

  • Timofeev I, Bazhenov M, Sejnowski T, Steriade M (2001a) Contribution of intrinsic and synaptic factors in the desynchronization of thalamic oscillatory activity. Thalamus and related systems. 1: 53–69.

    Article  Google Scholar 

  • Timofeev I, Grenier F, BazhenovM, Sejnowski TJ, Steriade M(2000) Origin of slow cortical oscillations in deafferented cortical slabs. Cer. Cortex 10: 1185–1199.

    Article  Google Scholar 

  • Timofeev I, Grenier F, SteriadeM(2001b) Disfacilitation and active inhibition in the neocortex during the natural sleep-wake cycle: An intracellular study. PNAS 98: 1924–1929.

    Article  PubMed  Google Scholar 

  • Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb. Cortex 13: 883–893.

    Article  PubMed  Google Scholar 

  • Traub RD, Jefferys JG, Whittington MA (1997) Simulation of gamma rhythms in networks of interneurons and pyramidal cells. J. Comput. Neurosci. 4: 141–150.

    Article  PubMed  Google Scholar 

  • Traub RD, Whittington MA, Colling SB, Buzsaki G, Jefferys JG (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J. Physiol. 493 (Pt 2): 471–484.

    PubMed  Google Scholar 

  • Troyer TW, Miller KD (1997) Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comput. 9: 971–983.

    PubMed  Google Scholar 

  • Tsodyks MV, Markram H (1997) The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci. 94: 719–723.

    Article  PubMed  Google Scholar 

  • Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Vol. 2, Nonlinear and Stochastic Theries. Cambridge University Press, Cambridge.

    Google Scholar 

  • Wang XJ (1998) Calcium coding and adaptive temporal computation in cortical pyramidal neurons. J. Neurophysiol. 79: 1549–1566.

    PubMed  Google Scholar 

  • Williams TL, Bowtell G (1997) The calculation of frequency-shift functions for chains of coupled oscillators, with application to a network model of the lamprey locomotor pattern generator. J. Comput. Neurosci. 4: 47–55.

    Article  PubMed  Google Scholar 

  • Winfree A (1987) When Time Breaks Down. Springer-Verlag, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rulkov, N., Timofeev, I. & Bazhenov, M. Oscillations in Large-Scale Cortical Networks: Map-Based Model. J Comput Neurosci 17, 203–223 (2004). https://doi.org/10.1023/B:JCNS.0000037683.55688.7e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:JCNS.0000037683.55688.7e

Navigation