Skip to main content
Log in

Mössbauer Spectra of Clays and Ceramics

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The physical, chemical and mineralogical aspects of the use of Mössbauer spectroscopy in studies of clay-based ceramics are described. Mössbauer spectra of pottery clays fired under oxidising, reducing and changing conditions are explained, and the possibilities of using Mössbauer spectra to derive information on the firing temperatures and the kiln atmosphere during firing in antiquity are discussed and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greenwood, N. N. and Gibb, T. C., Mössbauer Spectroscopy, Chapman and Hall, London, 1971.

    Google Scholar 

  2. Bancroft, G. M., Mössbauer Spectroscopy; An Introduction for Inorganic Chemists and Geochemists, McGraw-Hill, London, 1973.

    Google Scholar 

  3. Gütlich, P., Link, R. and Trautwein, A., Mössbauer Spectroscopy and Transition Metal Chemistry, Springer Verlag, Berlin, 1978.

    Google Scholar 

  4. Long, G. J. (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, Plenum, New York, 1984.

    Google Scholar 

  5. Dickson, D. P. E. and Berry, F. J., Mössbauer Spectroscopy, D. P. E. Dickson and F. J. Berry (eds.), Cambridge University Press, Cambridge, 1986.

    Google Scholar 

  6. Murad, E. and Cashion, J., Mössbauer Spectroscopy of Environmental Materials and Their Industrial Utilization, Kluwer, Boston, 2003.

    Google Scholar 

  7. Wagner, F. E. and Kyek, A., Mössbauer Spectroscopy in Archaeology: Introduction and Experimental Considerations, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  8. Cousins, D. R. and Dharmawardena, K. G., Use of Mössbauer Spectroscopy in the Study of Ancient Pottery, Nature 223(1969), 732–733.

    Google Scholar 

  9. Keisch, B., A Detector for Efficient Backscatter Mössbauer Effect Spectrocopy, Nucl. Instr. Methods 104(1972), 237–240.

    Google Scholar 

  10. Keisch, B., Mössbauer Effect Studies in Fine Arts, Archaeometry 15(1973), 79–104.

    Google Scholar 

  11. Keisch, B., Mössbauer Effect Studies of Fine Arts, J. Phys. Coll. 35 -C6(1974), 151–164.

    Google Scholar 

  12. Keisch, B., Mössbauer Effect Spectroscopy without Sampling: Application to Art and Archaeology, Advances in Chemistry Series (1975), 186–206.

  13. Keisch, B., Analysis of Works of Art, In: R. L. Cohen (ed.), Applications of Mössbauer Spectroscopy, Vol. 1, Academic Press, 1976, pp. 263–286.

  14. Béarat, H. and Pradell, T., Contribution of Mössbauer Spectroscopy to the Study of Ancient Pigment and Paintings, In: H. Béarat, M. Fuchs, M. Maggetti and D. Paunier (eds.), Roman Wall Painting-Materials, Techniques, Analysis and Conservation. Proc. of the Int.Workshop, Fribourg 7–9 March 1996, Fribourg, 1997, pp. 239–256.

  15. Klingelhöfer, G., da Costa, G. M., Prous, A. and Bernhardt, B., Rock Paintings from Minas Gerais, Brasil, Investigated by In-Situ Mössbauer Spectroscopy, Hyp. Interact. C5(2002), 423–426.

    Google Scholar 

  16. Hsia, Y. and Huang, H., Mössbauer Studies in Chinese Archaeology: A Review, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 33–50.

  17. Chen, S. H., Gao, Z. Y., Hu, G. and Chen, X., Mössbauer Analysis of the Firing Process of the Sky-Green Glaze of the Imitative Ancient Chinese Ru Porcelain, Hyp. Interact. 91(1–4) (1994), 651–656.

    Google Scholar 

  18. Chen, S. H., Gao, Z. Y. and Sun, Z. T., Low Temperature Mössbauer Spectroscopic Study on Sky-Green Glaze of Imitative Ancient Ru Porcelain, Chin. Sci. Bull. 39(3) (1994), 203–207.

    Google Scholar 

  19. Chen, S. H., Gao, Z. Y., Sun, Z. T. and Chen, X., Mössbauer Study of the Firing Technology of the Moon-White Jun Porcelain in Chinese Yuan Dynasty, Hyp. Interact. 91(1–4) (1994), 657–661.

    Google Scholar 

  20. Gao, Z. Y., Chen, S. H. and Jin, P. Z., Mössbauer Analysis of Yuan Dynasty Jun Porcelain Glaze, Nucl. Tech. (in Chinese), Hejishu 15(3) (1992), 138–142.

    Google Scholar 

  21. Gao, Z. Y., Chen, S. H. and Chen, X., Mössbauer Study of the Ru Porcelain of Chinese Song Dynasty & Yuan Dynasty, Hyp. Interact. 91(1994), 663–668.

    Google Scholar 

  22. Gao, Z. Y., Chen, S. H. and Chen, X., Mössbauer Study of the Firing Process of the Imitative Ancient Sky-Blue Jun Porcelain, Hyp. Interact. 91(1–4) (1994), 669–674.

    MathSciNet  Google Scholar 

  23. Yu, Z. F., Hu, X., Zheng, Y. F. and Lin, Y., Mössbauer Studies on Ancient Jizhon Plain Temmoku Porcelains, Hyp. Interact. 91(1–4) (1994), 675–678.

    Google Scholar 

  24. Hu, X., Chen, K. and Yin, H., A Study on Ancient Jizhou Plain Temmoku Porcelains and Some of the Raw Material, Huanan Ligong Daxue Xuebao, Ziran Kexeuban 25(10) (1997), 114–118.

    Google Scholar 

  25. Häusler, W., Firing of Clays Studied by X-ray Diffraction and Mössbauer Spectroscopy, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  26. Riederer, J., Thin Section Microscopy Applied to the Study of Archaeological Ceramics, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  27. Froh, J., Archaeological Ceramics Studied by Scanning Electron Microscopy, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  28. Glascock, M. D., Neff, H. and Vaughn, K. J., Instrumental Neutron Activation Analysis and Multivariate Statistics for Pottery Provenance, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  29. Lumbreras, L. G., Gebhard, R., Häusler, W., Kauffman-Doig, F., Riederer, J., Sieben, G. and Wagner, U., Mössbauer Study of Ceramic Finds from the Galería de las Ofrendas, Chavín de Huántar In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 51–73.

  30. Gebhard, R., Bott, R. D., Distler, N., Michálek, J., Riederer, J., Wagner, F. E. and Wagner, U., Ceramics from the Celtic Oppidum of Manching and Its Influence in Central Europe, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  31. Gebhard, R. and Wagner, U., Das wirtschaftliche Umfeld von Manching: Möglichkeiten von Keramik-Untersuchungen, In: C. Dobiat, S. Sievers and T. Stöllner (eds.), Dürrnberg und Manching, Wirtschaftsarchäologie im ostkeltischen Raum, Akten des Internationalen Kolloquiums in Hallein/Bad Dürrnberg, 7–11 Oktober 1998, Kolloquien zur Vor-und Frühgeschichte, Band 7, Dr. Rudolf Habelt GmbH, Bonn, 2002, pp. 243–252.

  32. Danon, J., Enriquez, C. R., Mattievich, E. and da C. Coutinho Beltrão, M., Mössbauer Study of Aging Effects in Ancient Pottery from the Mouth of the Amazon River, J. Phys. Coll. 37-C6(Suppl.) (1976), 866.

    Google Scholar 

  33. Eissa, N. A., Sallam, H. A. and Morcy, M. H., Estimation of Natural Radiation Dose and of the Age of Ancient Pottery by Mössbauer Effect, J. Phys. Coll. 40-C2(Suppl.) (1979), 462–463.

    Google Scholar 

  34. Aitken, M. J., Archaeological Dating Using Physical Phenomena, Rep. Prog. Phys. 62(1999), 1333–1376.

    ADS  Google Scholar 

  35. Eissa, N. A., Sheta, N. H., El Meligy, W. M. and Sallam, H. A., Mössbauer Effect Study of the Effect of Gamma Irradiation and Heat Treatment on Montmorillonite, Hyp. Interact. 91(1994), 783–787.

    Google Scholar 

  36. Scorzelli, R. B., Saitovitch, E. B. and Danon, J., Mössbauer Spectroscopy of Electron Irradiation Effects in Orthopyroxenes, J. de Physique, Colloque C1 41(Supp. 1) (1980), 459–460.

    Google Scholar 

  37. Ewing, R. C., The Metamict State: 1993-the Centennial, Nucl. Instr. Methods Phys. Res. B 91(1994), 22–29.

    ADS  Google Scholar 

  38. Ansaldo, E. J., Mössbauer Absorption in a Metamict Mineral, Nature 254(1975), 501.

    Google Scholar 

  39. Malczewski, D., 57Fe Mössbauer Study of One-Hour Annealing in Argon of Radiation Damage in Metamict Gadolinite from Ytterby, Hyp. Interact. 141/142(2002), 337–343.

    Google Scholar 

  40. Kotlicki, A., Boye Olsen, N. and Staun Olsen, J., Mössbauer and X-Ray Study of Proton Radiation Effects in Biotite, Radiation Effects 28(1976), 1–4.

    Google Scholar 

  41. Amulevičcius, A., Daugvila, A., Davidonis, R. and Vaitkevičcius, G., The Ageing Process in Ceramics, Hyp. Interact. 5(2002), 383–386.

    Google Scholar 

  42. Eissa, N. A., Sallam, H. A., Sanad, A. M. and Merazig, H., Observation of Radiation Effects on Ancient Pottery by Mössbauer Effect, In: D. Barb and D. Tarina (eds.), Int. Conf. on Mössbauer Spectroscopy-Proc., Vol. 1, Documentation Office, Central Institute of Physics, 1977, pp. 331–332.

    Google Scholar 

  43. Kostikas, A., Simopoulos, A. and Gangas, N. H. J., Mössbauer Studies of Ancient Pottery, J. Phys. Coll. 35(1974), 107–115.

    Google Scholar 

  44. Gangas, N. H. J., Sigalas, I. and Moukarika, A., Is the History of an Ancient Pottery Ware Correlated with Its Mössbauer Spectrum?, J. Phys. Coll. 37-C6(Suppl.) (1976), 867–871.

    Google Scholar 

  45. Wagner, U., Wagner, F. E. and Riederer, J., Mössbauer Refiring Studies of Ancient Ceramics from the Region of Berlin, Radiochem. Radioanal. Lett. 51(4) (1982), 244–256.

    Google Scholar 

  46. Pradell, T., Vendrell-Saz, M., Krumbein, W. and Picon, M., Altérations de Céramiques en Milieu Marin: Les Amphores de l'Epave Romaine de la Madrague de Giens, Revue d'Archeometrie 20(1996), 47–56.

    Google Scholar 

  47. Grim, R. E., Clay Mineralogy, McGraw-Hill, New York, 1968.

    Google Scholar 

  48. Brown, G. (ed.), The X-Ray Identification and Crystal Structures of Clay Minerals, 2nd edn, Mineralogical Society, London, 1972.

    Google Scholar 

  49. Brindley, G. W. and Brown, G. (eds.), Crystal Structures of Clay Minerals and Their X-Ray Identification, Mineralogical Society, Monograph No. 5, London, 1980.

    Google Scholar 

  50. Lagaly, G. and Köster, H. M., Tone und Tonminerale, In: K. Jasmund and G. Lagaly (eds.), Tonminerale und Tone-Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt, Steinkopff Verlag, Darmstadt, 1993, pp. 1–32.

    Google Scholar 

  51. Murad, E. and Wagner, U., Mössbauer Study of Pure Illite and Its Firing Products, Hyp. Interact. 91(1994), 685–688.

    Google Scholar 

  52. Murad, E. and Wagner, U., The Mössbauer Spectrum of Illite, Clay Miner. 29(1994), 1–10.

    Google Scholar 

  53. Mehra, O. P. and Jackson, M. L., Iron Oxide Removal from Soils and Clays by a Dithionite-Citrate System Buffered with Sodium Bicarbonate, Clays Clay Miner. 7(1960), 317–327.

    Google Scholar 

  54. Flügel, Ch., Flügel, E., Häusler, W., Joachimski, M., Koller, J., Baumer, U. and Wagner, U., Roman Coarse Ware from Bavaria, Austria and Northern Italy, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  55. Coey, J. M. D., Clay Minerals and Their Transformations Studied with Nuclear Techniques, Atom. Energy Rev. 18(1980), 73–124.

    Google Scholar 

  56. Coey, J.M. D., Ballet, O., Moukarika, A. and Soubeyroux, J. L., Magnetic Properties of Sheet Silicates; 1: 1 Layer Minerals, Phys. Chem. Miner. 7(1981), 141–148.

    Google Scholar 

  57. Ballet, O. and Coey, J. M. D., Magnetic Properties of Sheet Silicates; 2: 1 Layer Minerals, Phys. Chem. Miner. 8(1982), 218–229.

    Google Scholar 

  58. Coey, J. M. D., Mössbauer Spectroscopy of SilicateMinerals, In: G. J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. I, Plenum, New York, 1984, pp. 443–509.

    Google Scholar 

  59. Stevens, J. G., Khasanov, A., Miller, J. W., Pollak, H. and Lee, Z., Documentation and Evaluation of Mössbauer Data for Minerals, Hyp. Interact. 117(1998), 71–81.

    Google Scholar 

  60. Stevens, J. G., Khasanov, A. M., Miller, J. W., Pollak, H. and Lee, Z., Mössbauer Mineral Handbook, Mössbauer Effekt Data Center, Asheville, 1998.

    Google Scholar 

  61. Murad, E., Application of 57Fe Mössbauer Spectroscopy to Problems in Clay Mineralogy and Soil Science: Possibilities and Limitations, In: B. A. Stewart (ed.), Advances in Soil Science, Vol. 12, Springer, New York-Berlin-Heidelberg, 1990, pp. 126–157.

    Google Scholar 

  62. Murad, E., The Characterization of Soils, Clays, and Clay Firing Products, Hyp. Interact. 111(1998), 251–259.

    Google Scholar 

  63. Murad, E., Clays and Clay Minerals: What Can Mössbauer Spectroscopy Do to Help Understand Them?, Hyp. Interact. 117(1998), 39–70.

    Google Scholar 

  64. Rancourt, D. G., Mössbauer Spectroscopy in Clay Science, Hyp. Interact. 117(1998), 3–38.

    Google Scholar 

  65. Rozenson, I., Bauminger, E. R. and Heller-Kallai, L., Mössbauer Spectra of Iron in 1: 1 Phyllosilicates, Am. Miner. 64(1979), 893–901.

    Google Scholar 

  66. Heller-Kallai, L. and Rozenson, I., The Use of Mössbauer Spectroscopy of Iron in Clay Mineralogy, Phys. Chem. Miner. 7(1981), 223–238.

    Google Scholar 

  67. Rancourt, D. G., Mössbauer Spectroscopy of Minerals. 2. Problem of Resolving Cis & Trans Octahedral Fe2+ Sites, Phys. Chem. Miner. 21(4) (1994), 250–257.

    Google Scholar 

  68. Rancourt, D. G., Ping, J. Y. and Berman, R. G., Mössbauer Spectroscopy of Minerals. 3. Octahedral-Site Fe2+ Quadrupole Splitting Distributions in the Phlogopite-Annite Series, Phys. Chem. Miner. 21(4) (1994), 258–267.

    Google Scholar 

  69. Drits, V. A., Dayniak, L. G., Muller, F., Besson, G. and Manceau, A., Isomorphous Cation Distribution in Celadonites, Glauconites and Fe-Illites Determined by Infrared, Mössbauer and EXAFS Spectroscopies, Clay Miner. 32(1997), 153–179.

    Google Scholar 

  70. Rancourt, D. G., Accurate Site Population from Mössbauer Spectroscopy, Nucl. Instr.Methods Phys. Res. B 44(1989), 199–210.

    ADS  Google Scholar 

  71. Ingalls, R., Electric-Field Gradient Tensor in Ferrous Compounds, Phys. Rev. 133, 787–795.

  72. Sternheimer, R. M., Quadrupole Antishielding Factors of Ions, Phys. Rev. 130(4) (1963), 1423–1425.

    ADS  Google Scholar 

  73. Murad, E. and Wagner, U.,Mössbauer Spectra of Kaolinite, Halloysite and the Firing Products of Kalonite: New Results and a Reappraisal of Published Work, Neues Jahrb. Miner. 162(3) (1991), 281–309.

    Google Scholar 

  74. Murad, E., Wagner, U., Wagner, F. E. and Häusler, W., The thermal Reactions of Montmorillonite: A Mössbauer Study, Clay Minerals 37(2002), 583–590.

    Google Scholar 

  75. De Grave, E., Vandenbruwaene, J. and Van Bockstael, M., 57Fe Mössbauer Spectroscopic Analysis of Chlorite, Phys. Chem. Miner. 15(2) (1987), 173–180.

    Google Scholar 

  76. Wagner, F. E., Murad, E., Wagner, U. and Häusler, W., Mössbauer Spectra of Iron-Poor Montmorillonites: the Role of Slow Paramagnetic Relaxation, to be published.

  77. Ballet, O., Coey, J. M. D., Mangin, P. and Townsend, M. G., Ferrous Talc, a Planar Antiferromagnet, Solid State Comm. 55(1985), 787–790.

    Google Scholar 

  78. Townsend, M. G., Longworth, G. and Kodama, H., Magnetic Interaction at Low Temperature in Chlorite and Its Products of Oxidation: A Mössbauer Investigation, Can. Mineralogist 24(1986), 105–115.

    Google Scholar 

  79. Longworth, G., Townsend, M. G. and Ross, C. A. M., Mössbauer Spectra of Several Sheet Silicates in External Magnetic Field, Hyp. Interact. 28(1986), 451–454.

    Google Scholar 

  80. Dickson, D. P. E. and Cardile, C. M., Magnetic Ordering in a Montmorillonite Observed by 57Fe Mössbauer Spectroscopy at 1.3 K, Clays Clay Miner. 34(1) (1986), 103–104.

    Google Scholar 

  81. Townsend, M. G., Longworth, G., Ross, C. A. M. and Provencher, R., Ferromagnetic and Antiferromagnetic Fe III Spin Configurations in Sheet Silicates, Phys. Chem. Miner. 15(1987), 64–70.

    Google Scholar 

  82. Kündig, W., Evaluation of Mössbauer Spectra for 57Fe, Nucl. Instr. Methods 48(1967), 219–228.

    Google Scholar 

  83. Hoy, G. R., Relaxation Phenomena for Chemists, In: G. J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 1, Plenum, New York, 1984, pp. 195–226.

    Google Scholar 

  84. Stadnik, Z. M., Mössbauer Spectroscopy: VI. Mössbauer Spectroscopy Source Materials and Their Properties, In: J.W. Robinson (ed.), CRC Handbook of Spectroscopy, Vol. 3, CRC Press Inc., 1983, pp. 415–421.

  85. De Grave, E. and Van Alboom, A., Evaluation of Ferrous and Ferric Mössbauer Fractions, Phys. Chem. Miner. 18(1991), 337–342.

    Google Scholar 

  86. Sawatzky, G. A., van der Woude, F. and Morrish, A. H., Recoilless-Fraction Ratios for Fe57 in Octahedral and Tetrahedral Sites of a Spinel and a Garnet, Phys. Rev. 183(2) (1969), 383–386.

    ADS  Google Scholar 

  87. Meisel, W. and Kreysa, G., RelativeMössbauer-Konstanten von Eisenverbindungen zur quantitativen Analyse von Gemischen, Z. anorg. allg. Chem. 395(1973), 31–36.

    Google Scholar 

  88. Oh, S. J. and Cook, D. C., Mössbauer Effect Determination of Relative Recoilless Fractions for Iron Oxides, J. Appl. Phys. 85(1) (1999), 329–332.

    ADS  Google Scholar 

  89. Janot, C. and Delcroix, P., Mössbauer Study of Ancient French Ceramics, J. Phys. Coll. 35-C6(1974), 557–561.

    Google Scholar 

  90. Janot, C. and Delcroix, P., Charactérisation de Matériaux Archéologiques par Spectrométrie Mössbauer, Ethnol. Fr. 3(1974), 179–188.

    Google Scholar 

  91. Cornell, R. M. and Schwertmann, U., The Iron Oxides, Verlag Chemie, Weinheim, 1996.

    Google Scholar 

  92. Tronc, E., Prené, P., Jolivet, J. P., Dormann, J. L. and Grenéche, J. M., Spin Canting in γ-Fe2O3 Nanoparticles, Hyp. Interact. 112(1998), 97–100.

    Google Scholar 

  93. Murad, E. and Johnston, J. H., Iron Oxides and Oxyhydroxides, In: G. J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, Plenum, New York, 1987, pp. 507–582.

    Google Scholar 

  94. Bowen, L. H., De Grave, E. and Vandenberghe, R. E., Mössbauer Effect Studies of Magnetic Soils and Sediments, In: G. J. Long and F. Grandjean (eds.), Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 1, Plenum Press, New York, 1993, pp. 115–159.

    Google Scholar 

  95. Wilkinson, C., Cheetham, A. K., Long, G. J., Battle, P. D. and Hope, D. H. O., Polarized Neutron Diffraction and Mössbauer Effect Study of the Magnetic Ordering in Wüstite, FeyO, Inorg. Chem. 23(1984), 3136–3141.

    Google Scholar 

  96. Murad, E. and Schwertmann, U., Influence of Al Substitution and Crystal Size on the Room-Temperature Mössbauer Spectrum of Hematite, Clays Clay Miner. 34(1986), 1–6.

    Google Scholar 

  97. Riederer, J., Wagner, U. and Wagner, F. E., Mössbauer Study and Firing Conditions of Ancient Egyptian Ceramics with Multicoloured Layers, Radiochem. Radioanal. Lett. 40(1979), 319–328.

    Google Scholar 

  98. Riederer, J., Wagner, U. and Wagner, F. E., Mössbauer Study and Firing Conditions of Ancient Egyptian Ceramics with Multicoloured Layers, J. Phys. Coll. 40-C2(Suppl.) (1979), 487.

    Google Scholar 

  99. Kündig, W., Bömmel, H., Constabaris, G. and Lindroos, R. H., Some Properties of Supported Small α-Fe2O3 Particles Determined with the Mössbauer Effect, Phys. Rev. 142(1966), 327–333.

    ADS  Google Scholar 

  100. van der Kraan, A. M., Mössbauer Effect Studies of Surface Ions of Ultrafine α-Fe2O3 Particles, Phys. Status Solidi 18(1973), 215–226.

    Google Scholar 

  101. Gangas, N. H., Simopoulos, A., Kostikas, K., Yassoglu, N. J. and Filippakis, S., Mössbauer Studies of Small Particles of Iron Oxides in Soil, Clays Clay Miner. 21(1973), 151–160.

    Google Scholar 

  102. Mørup, S., Mössbauer Effect Studies of MicrocrystallineMaterials, In: G. J. Long (ed.), Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, Plenum Publishing Corporation, New York, 1987, pp. 89–123.

    Google Scholar 

  103. Lumbreras, G. L., Chavín de Huántar, Excavaciones en la Galería de las Ofrendas, Vol. 51 of Mat. zur Allgemeinen und Vergleichenden Archäologie, Beck-Verlag, Bonn, 1993.

    Google Scholar 

  104. Gebhard, R., Kauffmann-Doig, F., Lumbreras, G. L., Riederer, J., Wagner, F. E. and Wagner, U., Mössbauer Study of Ceramic Finds from the Galería de las Ofrendas, Chavín de Huantar, Perú, Hyp. Interact. 2(C) (1997), 6–9.

    Google Scholar 

  105. Berry, F. J., Skinner, S. and Thomas, M. F., Mössbauer Spectroscopic Examination of a Single Crystal of Fe3O4, J. Phys.: Condens. Matter 10(1998), 215–220.

    ADS  Google Scholar 

  106. Madsen, M. B., Agerkvist, D. P., Gunnlaugsson, H. P., Faurschou Hviid, S., Knudsen, J. M. and Vistinen, L., Titanium and the Magnetic Phase on Mars, Hyp. Interact. 95(1995), 291–304.

    Google Scholar 

  107. Schwertmann, U. and Murad, E., The Influence of Aluminium on Iron Oxides: XIV. Al-SubstitutedMagnetite Synthesized at Ambient Temperatures, Clays Clay Miner. 38(2) (1990), 196–202.

    Google Scholar 

  108. McNab, T. K., Fox, R. A. and Boyle, J. F., Some Magnetic Properties of Magnetite (Fe3O4) Microcrystals, J. Appl. Phys. 39(1968), 5703–5711.

    Google Scholar 

  109. Mørup, S., Topsøe, H. and Lipka, J., Modified Theory for Mössbauer Spectra of Superparamagnetic Particles: Application to Fe3O4, J. Phys. 37-C6(1976), 287–290.

    Google Scholar 

  110. Bowen, L. H., De Grave, E. and Bryan, A. M., Mössbauer Studies in an External Field of Well-Crystallized Al-MaghemitesMade from Hematite, Hyp. Interact. 94(1994), 1977–1982.

    Google Scholar 

  111. da Costa, G. M., De Grave, E., Bowen, L. H., Vandenberghe, R. E. and de Bakker, P. M. A., The Center Shift in Mössbauer Spectra of Maghemite and Aluminum Maghemites, Clays Clay Miner. 42(1994), 628–633.

    Google Scholar 

  112. da Costa, G. M., De Grave, E., Bryan, A. M. and Bowen, L. H., Mössbauer Studies of Nano-Sized Aluminium-Substituted Maghemites, Hyp. Interact. 94(1994), 1983–1987.

    Google Scholar 

  113. da Costa, G. M., De Grave, E., Boven, L.H. and Vandenberghe, R. E., The Importance of Applied-Field Mössbauer Spectroscopy for the Characterization of Maghemite and Al-Substituted Maghemites, In: I. Ortalli (ed.), Proc. of the Int. Conf. on the Applications of the Mössbauer Effect, Part II, Vol. 50, Società Italiana di Fisica, 1996, pp. 307–310.

  114. Coey, J. M. D. and Khalafalla, D., Superparamagnetic γ-Fe2O3, Phys. Stat. Solidi A 11(1972), 229–241.

    Google Scholar 

  115. Bakker, P. M. A., De Grave, E., Vandenberghe, R. E., Bowen, L. H., Pollard, R. J. and Persoons, R. M., Mössbauer Study of the Thermal Decomposition of Lepidocrocite and Characterization of the Decomposition Products, Phys. Chem. Miner. 18(1991), 131–143.

    Google Scholar 

  116. Schwertmann, U. and Heinemann, B., Über das Vorkommen und die Entstehung von Maghemit in nordwestdeutschen Böden, Neues Jahrb. Miner. Monatsh. (1959), 174–181.

  117. Crowther, J., Potential Magnetic Susceptibility and Fractional Conversion Studies of Archaeological Soils and Sediments, Archaeometry 45(4) (2003), 685–701.

    Google Scholar 

  118. Longworth, G., Becker, L.W., Thompson, R., Oldfield, F., Dearing, J. A. and Rummery, T. A., Mössbauer and Magnetic Studies of Secondary Iron Oxides in Soils, J. Soil Sci. 30(1979), 93–110.

    Google Scholar 

  119. Chevalier, R., Coey, J. M. D. and Bouchez, R., A Study of Iron in Fired Clay: Mössbauer Effect and Magnetic Measurements, J. Phys. Coll. 37-C6(Suppl.) (1976), 861–865.

    Google Scholar 

  120. Longworth, G. and Tite, M. S., Mössbauer andMagnetic Susceptibility Studies of Iron Oxides in Soils from Archaeological Sites, Archaeometry 19(1977), 3–14.

    Google Scholar 

  121. Coey, J. M. D., Bouchez, R. and Dang, N. V., Ancient techniques, J. Appl. Phys. 50(1979), 7772–7777.

    Google Scholar 

  122. Dormann, J. L., Viart, N., Rehspringer, J. L., Ezzir, A. and Niznansky, D., Magnetic Properties of Fe2O3 Particles Prepared by Sol-Gel Method, Int. Conf. on Mössbauer Spectroscopy, Johannesburg, South Africa, 3–5 November 1996, Hyp. Interact. 112(1998), 89–92.

    Google Scholar 

  123. Schrader, R. and Büttner, G., Eine neue Eisen(III)-oxidphase: ε-Fe2O3, Z. anorg. allg. Chem. 320(1963), 220–234.

    Google Scholar 

  124. Dézsi, I. and Coey, J. M. D., Magnetic and Thermal Properties of ε-Fe2O3, Phys. Status Solidi A 15(1973), 681–685.

    Google Scholar 

  125. Hayashida, F., Häusler, W. and Wagner, U., Technology and Organisation of Inka Pottery Production in the Leche Valley. Part I: Study of Clays and Unfired Sherds, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 141–151.

  126. Shimada, I., Häusler, W., Hutzelmann, T. and Wagner, U., Early Pottery Making in Northern Coastal Peru. Part I: Mössbauer Study of Clays, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 73–89.

  127. Mori, K., Okada, T., Takagi, Y., Takada, Y. and Mizoguchi, T., Oxidation and Disproportionation of Wüstite Studied by Mössbauer Spectroscopy, Jpn. J. Appl. Phys. 38(1999), L189-L191.

    Google Scholar 

  128. Gebhard, R., Industry in Celtic Oppidam-Aspects of High Temperature Processes, In: G. Morteani and J. P. Northover (eds.), Prehistoric Gold in Europe: Mines, Metallurgy and Manufacture, Proceedings of the NATO Advanced Research Workshop on Prehistoric Gold in Europe, Seeon, Germany, September 27-October 1, 1993, Vol. 280 of NATO ISI Series E: Applied Sciences, Kluwer Academic Publishers, Dordrecht, 1995, pp. 261–272.

    Google Scholar 

  129. Long, G. J. and Grandjean, F., Mössbauer Effect, Magnetic and Structural Studies of Wüstite, Fe1−x O, Advances in Solid State Chemistry, Vol. 2, JAI Press Ltd, 1991, pp. 187–221, ISBN: 0–89232–954–8.

    Google Scholar 

  130. Hentschel, B., Stoichiometric FeO as Metastable Intermediate of the Decomposition of Wüstite at 225°C, Z. Naturforsch. A 25(1970), 1996–1997.

    Google Scholar 

  131. McCammon, C. and Pankhurst, Q. A., Magnetic Defect Structure of Iron-Rich FexO, Hyp. Interact. 94(1994), 1989–1993.

    Google Scholar 

  132. Long, G. J., Hope, D. A. O. and Cheetham, A. K., Neutron Diffraction and Mössbauer-Effect Study of (MnxFe1−x )yO Solid Solutions, Inorg. Chem. 23(1984), 3141–3146.

    Google Scholar 

  133. Jing, J. and Campbell, S. J., Mixed Hyperfine Interactions and Defect Structure in Magnesiowüstite, Fe-Mg-O, Hyp. Interact. 68(1991), 283–286.

    Google Scholar 

  134. Govaert, A., Dauwe, C., Plinke, P., De Grave, E. and De Sitter, J., A Classification of Goethite Minerals Based on the Mössbauer Behaviour, J. Phys. Coll. 37-C6(supplément au no. 12) (1976), 825–827.

    Google Scholar 

  135. Gebhard, R., Häusler, W., Moosauer, M. and Wagner, U., Mössbauer Study of a Bronze Age Rampart in Lower Bavaria, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  136. Gebhard, R., Guggenbichler, E., Häusler, W., Schmotz, K., Wagner, F. E. and Wagner, U., Mössbauer Study of a Celtic Pottery-Making Kiln in Lower Bavaria, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 1, Kluwer.

  137. Jambor, J. L. and Dutrizac, J. E., Occurrence and Constitution of Natural and Synthetic Ferrihydrite, a Widespread Iron Oxyhydroxide, Chem. Rev. 98(1998), 2549–2585.

    Google Scholar 

  138. Murad, E., Bowen, L. H., Long, G. J. and Quin, T. G., The Influence of Crystallinity on Magnetic Ordering in Natural Ferrihydrites, Clay Miner. 23(1988), 161–173.

    Google Scholar 

  139. Amthauer, G., Amersten, H. and Hafner, S. S., The Mössbauer Spectrum of 57Fe in Silicate Garnets, Z. Kristallographie 143(1976), 14.

    Google Scholar 

  140. Murad, E. and Wagner, F. E., The Mössbauer Spectrum of Almandine, Phys. Chem. Miner. (1987), 264–269.

  141. Prandl, W. and Wagner, F., Die Orientierung des elektrischen Feldgradienten und das innere Magnetfeld beim Almandin, Z. Kristallographie 134(1971), 344–349.

    Google Scholar 

  142. Gebhard, R., Lehrberger, G., Morteani, G., Raub, C., Wagner, F. E. and Wagner, U., Coin Moulds and other Ceramic Material: A Key to Celtic Precious Metal Working, In: G. Morteani and J. P. Northover (eds.), Prehistoric Gold in Europe: Mines, Metallurgy and Manufacture, Proceedings of the NATO Advanced Research Workshop on Prehistoric Gold in Europe, Seeon, Germany, September 27-October 1, 1993, Vol. 280 of NATO ISI Series E: Applied Sciences, Kluwer, Dordrecht, 1995, pp. 273–301.

    Google Scholar 

  143. Fehr, K. T. and Heuss-Assbichler, S., Intracrystalline Equilibria and Immiscibility along the Join Clinozoisite-Epidote: an Experimental and 57Fe Mössbauer Study, Neues Jahrb. Miner. Abh. 172(1997), 43–63.

    Google Scholar 

  144. Dollase, W. A., Mössbauer Spectra and Iron Distribution in the Epidote-Group Minerals, Z. Kristallographie 138(1973), 41–63.

    Google Scholar 

  145. Tschauner, H. and Wagner, U., Pottery from a Chimú Workshop Studied by Mössbauer Spectroscopy, In: U.Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 165–186.

  146. Shimada, I., Häusler, W., Jakob, M., Montenegro, J., Riederer, J. and Wagner, U., Early Pottery Making in Northern Coastal Peru. Part IV:Mössbauer Study of Ceramics from Huaca Sialupe, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 125–139.

  147. Murad, E. and Wagner, U., Pure and Impure Clays and their Firing Products, Hyp. Interact. 45(1989), 161–177.

    Google Scholar 

  148. Wagner, U., Gebhard, R., Grosse, G., Hutzelmann, T., Murad, E., Riederer, J., Shimada, I. and Wagner, F. E., Clay: An Important Raw Material for Prehistoric Man, Hyp. Interact. 117(1998), 323–335.

    Google Scholar 

  149. Wagner, U., Gebhard, R., Murad, E., Grosse, G., Riederer, J., Shimada, I. and Wagner, F. E., Formative Ceramics from the Andes and Their Production: AMössbauer Study, Hyp. Interact. 110(1997), 165–176.

    Google Scholar 

  150. Murad, E. and Wagner, U., Clays and Clay Minerals: The Firing Process, Hyp. Interact. 117(1998), 337–356.

    Google Scholar 

  151. Qin, G. Y., Pan, X. J. and Li, S., Mössbauer Firing Study of Terracotta Warriors and Horses of the Qin Dynasty (221 BC), Archaeometry 31(1) (1989), 3–12.

    Google Scholar 

  152. Murad, E. and Wagner, U., Clays and Clay Minerals: The Firing Process, Hyp. Interact. 117(1998), 337–356.

    Google Scholar 

  153. Murad, E. and Wagner, U., Mössbauer Spectra of Kaolinite; Haloysite and the Firing Products of Kaolinite; New Results and Reappraisal of Published work, In: Neues Jahrbuch für Mineralogie, Abhandlungen, Vol. 162, 1991, pp. 281–300.

    Google Scholar 

  154. Gebhard, R., Große, G., Lehrberger, G., Riederer, J., Wagner, F. E. and Wagner, U., What Mössbauer Spectroscopy Can Tell Us about Precious Metal Working in Celtic Times, In: I. Ortalli (ed.), International Conference on the Applications of the Mössbauer Effect, Rimini, Italy, 10–16 September 1995, Vol. 50, Società Italiana di Fisica, Bologna, 1996, pp. 781–784.

    Google Scholar 

  155. Wagner, U., Gebhard, R., Murad, E., Riederer, J., Shimada, I., Ulbert, C. and Wagner, F. E., Production of Formative Ceramics: Assessment by Physical Methods, In: I. Shimada (ed.), Andean Ceramics: Technology, Organization and Approaches, Supplement to Vol. 15, In: MASCA Research Papers in Science and Archaeology, University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, 1998, pp. 173–197.

    Google Scholar 

  156. Wagner, U., Gebhard, R., Häusler, W., Hutzelmann, T., Riederer, J., Shimada, I., Sosa, J. and Wagner, F. E., Reducing Firing of an Early Pottery Making Kiln at Batán Grande, Peru: A Mössbauer Study, Hyp. Interact. 122(1999), 163–170.

    Google Scholar 

  157. Murad, E. and Wagner, U., The Thermal Behaviour of an Iron-Rich Illite, Clay Miner. 31(1996), 45–52.

    Google Scholar 

  158. Wagner, U., Knorr,W., Forster, A., Murad, E., Salazar, R. and Wagner, F. E., Mössbauer Study of Illite Associated with Iron-Oxihydrides, Hyp. Interact. 41(1988), 855–858.

    Google Scholar 

  159. De Grave, E., Bowen, L. H., Vochten, R. and Vandenberghe, R. E., The Effect of Crystallinity and Al Substitution on theMagnetic Structure andMorin Transition in Hematite, J. Mag. Mag. Mater. 72(1988), 141–151.

    ADS  Google Scholar 

  160. Van San, E., De Grave, E., Vandenberghe, R. E., Desseyn, H. O., Datas, L., Barrón, V. and Rousset, A., Study of Al-Substituted Hematites, Prepared from Thermal Treatment of Lepidocrocite, Phys. Chem. Miner. 28(2001), 488–497.

    ADS  Google Scholar 

  161. De Grave, E., Bowen, L. H., Amarasiriwardena, D. D. and Vandenberghe, R. E., 57Fe Mössbauer Effect Study of Highly Substituted Aluminium Hematites: Determination of the Magnetic Hyperfine Field Distributions, J. Mag. Mag. Mater. 72(1988), 129–140.

    ADS  Google Scholar 

  162. De Grave, E., Govaert, A., Chambaere, D. and Robbrecht, G., A Mössbauer Effect Study of MgFe2O4, Physica B 96(1979), 103–110.

    Google Scholar 

  163. Sundararajan, M. D., Narayanasamy, A., Nagarajan, T., Häggström, L., Swamy, C. S. and Ramanujachary, K. V., Mössbauer investigation of magnesium ferrite-aluminate, J. Phys. C: Solid State Phys. 17(1984), 2953–2965.

    ADS  Google Scholar 

  164. Fayek, M., Elnimr, M., Nada, N. and Saleh, H., The Influence of Cation Substitution on the Magnetic Behaviour of Magnesium Ferrite, Annalen der Physik. 7. Folge 46(4) (1989), 247–259.

    Google Scholar 

  165. Salazar, R., Wagner, U., Wagner, F. E. and Murad, E., Mössbauer Firing Study of Peruvian Clays, Radiochem. Radioanal. Lett. 59(1983), 299–306.

    Google Scholar 

  166. Ronchetti, S., Piana, M., Delmastro, A., Salis, M. and Mazza, D., Synthesis and Characterization of Fe and P substituted 3: 2 Mullite, J. Europ. Ceram. Soc. 21(2001), 2509–2514.

    Google Scholar 

  167. Chaudhuri, S. P. and Patra, S. K., Electron Paramagnetic Resonance and Mössbauer Spectroscopy of Transition Metal Ion Doped Mullite, J. Mater. Sci. 35(2000), 4735–4741.

    Google Scholar 

  168. Parmentier, J. and Vilminot, S., Fe-and Cr-substituted Mullites: Mössbauer Spectroscopy and Rietveld Structure Refinement, Solid State Sciences 1(5) (1999), 257–265.

    Google Scholar 

  169. Nowok, J. W., Hurley, J. P. and Bieber, J. A., The Cause of Surface Tension Increase with Temperature in Multicomponent Aluminosilicates Derived from Coal-Ash Slags, J. Mater. Sci. 30(1995), 361–364.

    Google Scholar 

  170. Cardile, C. M., Brown, I. W. M. and Mackenzie, K. J. D., Mössbauer Spectra and Lattice Parameters of Iron-Substituted Mullites, J. Mater. Sci. Lett. 6(1987), 357–362.

    Google Scholar 

  171. Schneider, H. and Rager, H., Iron Incorporation in Mullite, Ceramics International 12(3) (1986), 117–125.

    Google Scholar 

  172. Gunter, A. E., Skippen, G. B. and Chao, G. Y., Cell Dimensions, Mössbauer and Infrared-Absorption Spectra of Synthetic Cordierite, Can. Mineralogist 22(1984), 447–452.

    Google Scholar 

  173. Vance, R. E. and Price, D. C., Heating and Radiation Effects on Optical and Mössbauer Spectra of Fe-Bearing Cordierites, Phys. Chem. Miner. 10(1984), 200–208.

    Google Scholar 

  174. Duncan, J. F. and Johnston, J. H., Single-Crystal 57Fe Mössbauer Studies of the Site Positions in Cordierite, Austral. J. Chem. 27(1974), 249–258.

    Google Scholar 

  175. Maniatis, Y., Simopoulos, A. and Kostikas, A., Mössbauer Study of the Effect of Calcium Content on Iron Oxide Transformations in Fired Clays, J. Am. Ceram. Soc. 64(1981), 263–269.

    Google Scholar 

  176. Maggetti, M. and Heimann, R., Bildung und Stabilität von Gehlenit in römischer Feinkeramik, Schweiz. Mineralog. Petrogr. Mitteilungen 59(1979), 413–417.

    Google Scholar 

  177. Akasaka, M. and Ohashi, H., 57Fe Mössbauer Study of Synthetic Fe3+-Melilites, Phys. Chem. Miner. 12(1985), 13–18.

    Google Scholar 

  178. Akasaka, M., Ohashi, H. and Shinno, I., The Distribution of Fe3+ and Ga3+ Between Two Tetrahedral Sites in Melilites, Ca2(Mg,Fe3+,Ga,Si)3O7, Phys. Chem. Miner. 13(1986), 152–155.

    Google Scholar 

  179. Barb, D., Constantinescu, S., Tarina, D., Lyubutin, I. S., Mill, B. V., Terziev, V. G., Dimitrieva, T. V. and Butashin, A. V., 57Fe Mössbauer Spectroscopy on Synthetic Ferrigehlenites, Revue Roumaine de Physique 33(1988), 1111–1115.

    Google Scholar 

  180. Barb, D., Constantinescu, S., Tarina, D., Lyubutin, I. S., Mill, B. V., Terziev, V. G., Dimitrieva, T. D. and Butashin, A. V., Magnetic Hyperfine Fields in Ferrighehlenites, Hyp. Interact. 50(1989), 645–650.

    Google Scholar 

  181. El-Hage, Y., Wagner, U., Wagner, F. E., Riederer, J., Echt, R. and Hachmann, R., Mössbauer Study of Ceramic Finds from the Early Phoenician Palace in Kamid El-loz, Lebanon, Hyp. Interact. 57(1990), 2173–2178.

    Google Scholar 

  182. El-Hage, Y. K., Study of Ceramic Finds from the Early Phoenician Palace in Kāmid el-LŌz, Lebanon, by Neutron Activation Analysis, Thin Section Microscopy and Mössbauer Spectroscopy., Ph.D. Thesis, Technical University of Munich, 1990.

  183. El-Hage, Y., Elffroth, B., Wagner, U., Wagner, F. E., Riederer, J., Echt, R. and Hachmann, R., Mössbauer and Neutron Activation Analysis of Ceramic Finds from the Early Phoenician Palace in Kamiod El-Loz, Lebanon, In: E. Pernicka and G. A. Wagner (eds.), Archaeometry '90, Int. Symposium on Archaeometry, 2–6 April 1990, Heidelberg, Birkhäuser Verlag, Basel-Boston-Berlin, 1991, pp. 375–384.

    Google Scholar 

  184. Bancroft, G. M., Williams, P. G. L. and Burns, R. G., Mössbauer Spectra of Minerals Along the Diopside Hedenbergite Tie Line, Am. Miner. 56(1971), 1617.

    Google Scholar 

  185. Coey, J. M. D. and Ghose, S., Magnetic Order in Hedenbergite: CaFeSi2O6, Solid State Comm. 53(2) (1985), 143–145.

    Google Scholar 

  186. Regnard, J. R. and Boujida, M., Relation between Magnetic Hyperfine Field Distribution and Cation Order in Natural Hedenbergite, Hyp. Interact. 41(1988), 513–516.

    Google Scholar 

  187. Hafner, S. S. and Huckenholz, H. G., Mössbauer Sepctrum of Ferri-Diopside, Nature (London), Phys. Sci. 233(1971), 9.

    ADS  Google Scholar 

  188. Van Alboom, A., De Grave, E. and Vandenberghe, R. E., Mössbauer Study of the Hematie Phase Formed During Sythesis of Ferri-Diopsides, J. Solid State Chem. 95(1991), 204–212.

    ADS  Google Scholar 

  189. De Grave, E. and Van Alboom, A., Mössbauer Study of Sythetic Ferrian Diopsides, In: I. Ortalli (ed.), International Conference on the Applications of the Mössbauer Effect, Rimini, Italy, 10–16 September 1995, Vol. 50, Società Italiana di Fisica, Bologna, 1996, pp. 7129–7132.

    Google Scholar 

  190. Molera, J., Pradell, T. and Vendrell-Saz, M., The Colours of Ca-Rich Ceramic Pastes: Origin and Characterization, Appl. Clay Sci. 13(3) (1998), 187–202.

    Google Scholar 

  191. MacKenzie, K. J. D., A Mössbauer Study of the High-Temperature Reactions of Iron Oxides with Calcium Silicates, J. Mater. Sci. 17(1982), 1834–1842.

    Google Scholar 

  192. Dalton, A. P., Honeybourne, C. L. and Plummer, P. L., A Mössbauer Study of Sub-Micron Particles in the Calciferous and Calciferous-Aluminous Mixed Oxide System (C-A-F System), J. Phys. Chem. Solids 47(1986), 553–563.

    Google Scholar 

  193. Hassaan, M. Y. and Eissa, N. A., Application of Mössbauer Spectroscopy in Cement Studies, Am. Ceram. Soc. Bull. 66(12) (1987), 1747–1754.

    Google Scholar 

  194. Maniatis, Y., Simopoulos, A., Kostikas, A. and Perdikatsis, V., Effect of Reducing Atmosphere on Minerals and Iron Oxides Developed in Fired Clays: The Role of Ca, J. Am. Ceram. Soc. 66(1983), 773–781.

    Google Scholar 

  195. Greenwood, N. N. and Earshaw, A., Chemistry of the Elements, Pergamon Press, Oxford, 1984, pp. 326–328.

    Google Scholar 

  196. Lietzke, X. X. and Mullins, C., The Thermal Decomposition of Carbon Doixide, J. Inorg. Nucl. Chem. 43(1981), 1796–1771.

    Google Scholar 

  197. Heimann, R. B., Maggetti, M. and Einfalt, H. C., Zum Verhalten des Eisens beim Brennen eines kalkhaltigen illitischen Tons unter reduzierenden Bedingungen, Ber. Dt. Keram. Ges. 57(6–8) (1980), 145–152.

    Google Scholar 

  198. Wagner, U., Gebhard, R., Murad, E., Riederer, J., Shimada, I. and Wagner, F. E., Kiln Firing at Batán Grande: Today and in Formative Times, In: D. A. Scott and P. Meyers (eds.), Archaeometry of Pre-Columbian Sites and Artefacts, Proc. of a Symposium Organized by the UCLA Institute of Archaeology and the Getty Conservation Institute Los Angeles, California March 23–27, 1992, Getty Institution Press, 1994, pp. 67–84.

  199. Russo, U., Carbonin, S. and della Giusta, A., Mössbauer Spectral Studies of Natural Substituted Spinels, In: G. J. Long and F. Grandjean (eds.), Mössbauer Spectroscopy Applied to Magnetism and Materials Science, Vol. 2, Plenum, New York, 1996, pp. 207–223.

    Google Scholar 

  200. MacKenzie, K. J. D. and Cardile, C. M., A 57Fe Mössbauer Study of Black Coring Phenomena in Clay-Based Ceramic Materials, J. Mater. Sci. 25(1990), 2937–2942.

    Google Scholar 

  201. Larsson, L., O'Neill, H. S. C. and Annersten, H., Crystal Chemistry of Synthetic Hercynite (FeAl2O4) from XRS Structural Refinements and Mössbauer Spectroscopy, Eur. J. Mineral. 4(1994), 39–51.

    Google Scholar 

  202. Dormann, J. L., Seqqat, M., Fiorani, D., Noguès, M., Soubeyroux, J. L., Bhargava, S. C. and Renaudin, P., Mössbauer Studies of FeAl2O4 and FeIn2S4 Spin Glass Spinels, Hyp. Interact. 54(1990), 503–507.

    Google Scholar 

  203. Lottermoser, W., Forcher, K., Amthauer, G. and Fuess, H., Powder-and Single Crystal Mössbauer Spectroscopy on Synthetic Fayalite, Phys. Chem. Miner. 22(1995), 259–267.

    Google Scholar 

  204. Shenoy, G. K., Kalvius, G. M. and Hafner, S. S., Magnetic Behavior of the FeSiO3-MgSiO3 Orthopyroixene System from NGR in 57Fe*, J. Appl. Phys. 40(3) (1969), 1314–1316.

    Google Scholar 

  205. Regnard, J. R., Guillen, R., Wiedenmann, A., Fillion, G., Hafner, S. and Langer, K., Mössbauer and Magnetic Studies of Orthorhombic FeSiO3, Hyp. Interact. 28(1986), 589–592.

    Google Scholar 

  206. Wiedenmann, A., Regnard, J.-R., Fillion, F. and Hafner, S. S., Magnetic Properties and Magnetic Ordering of the Orthopyroxenes FexMg1xSiO3, J. Phys. C: Solid State Phys. 19(1986), 3683–3695.

    ADS  Google Scholar 

  207. Regnard, J. R., Greneche, J. M. and Guillen, R., Temperature Dependence of the Hyperfine Parameters of a Natural Orthopyroxene Fe0.87Mg0.13SiO3, Solid State Comm. 63(4) (1987), 277–283.

    Google Scholar 

  208. Srivastava, K. K. P., Mössbauer Study of Spin-Spin Relaxation of Fe(II) Ions in Natural Orthopyroxenes, J. Phys. C: Solid State Phys. 20(1987), 2161–2168.

    ADS  Google Scholar 

  209. Mackenzie, K. J. D., Brown, I. W. M. and Bowden, M. E., Catalytic Properties of Materials Derived from Iron-Containing Clays, Reactivity of Solids 1(1986), 171–188.

    Google Scholar 

  210. Bertelle, M., Calogero, S., Leotta, G., Salerno, R., Segnan, R. and Stievano, L., Firing techniques of the Impasti from the Protohistoric site of Concordia Sagittaria (Venice), J. Arch. Sci. 28(2000), 197.

    Google Scholar 

  211. Shimada, I., Goldstein, D., Häusler, W., Sosa, J., Riederer, J. and Wagner, U., Early Pottery Making in Northern Coastal Peru. Part II: Field Firing Experiments, In: U. Wagner (ed.), Mössbauer Spectroscopy in Archaeology, Hyp. Interact., topical issue, Vol. 2, Kluwer, pp. 91–105.

  212. Hutzelmann, Th., Mössbaueruntersuchungen an archäologischer Keramik aus Batán Grande, Diploma thesis, Technische Universität München, 1998.

  213. Wagner, U., Wagner, F. E., Häusler, W. and Shimada, I., The Use of Mössbauer Spectroscopy in Studies of Archaeological Ceramics, In: D. E. Creagh and D. A. Bradley (eds.), Radiation in Art and Archaeometry, Elsevier, Amsterdam, 2000, pp. 417–443.

    Google Scholar 

  214. Wagner, U., Häusler, W., Shimada, I. and Wagner, F. E., Mössbauer Spectroscopy in South American Archaeology, Hyp. Interact. 148/149(2003), 13–20.

    ADS  Google Scholar 

  215. Bott, R. D., Gebhard, R., Wagner, F. E. and Wagner, U., Mössbauer Study of Graphite Ware from the Celtic Oppidum of Manching, Hyp. Interact. 91(1994), 639–644.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, F.E., Wagner, U. Mössbauer Spectra of Clays and Ceramics. Hyperfine Interactions 154, 35–82 (2004). https://doi.org/10.1023/B:HYPE.0000032113.42496.f2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYPE.0000032113.42496.f2

Navigation