Skip to main content
Log in

Ecosystem Processes Performed by Unionid Mussels in Stream Mesocosms: Species Roles and Effects of Abundance

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Unionid mussels are a guild of freshwater, sedentary filter-feeders experiencing a global decline in both species richness and abundance. To predict how these losses may impact stream ecosystems we need to quantify the effects of both overall mussel biomass and individual species on ecosystem processes. In this study we begin addressing these fundamental questions by comparing rates of ecosystem processes for two common mussel species, Amblema plicata and Actinonaias ligamentina, across a range of abundance levels and at two trophic states (low and high productivity) in stream mesocosms. At both low and high productivity, community respiration, water column ammonia, nitrate, and phosphorus concentrations, and algal clearance rates were all linearly related to overall mussel biomass. After removing the effects of biomass with ANCOVA, we found few differences between species. In a separate series of experiments, nutrient excretion (phosphorus, ammonia, and molar N:P) and biodeposition rates were only marginally different between species. For the species studied here, functional effects of unionids in streams were similar between species and linearly related to biomass, indicating the potential for strong effects when overall mussel biomass is high and hydrologic residence times are long.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alimov, A. F., 1975. The rate of metabolism of freshwater bivalve molluscs. Soviet Journal of Ecology 6: 6–13.

    Google Scholar 

  • American Public Health Association, 1995. Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arnott, D. L. & M. J. Vanni, 1996. Nitrogen and phosphorus recycling by the zebra mussel (Dreissena polymorpha )in the western basin of Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 53: 646–659.

    Google Scholar 

  • Baker, S. M. & D. J. Hornbach, 2001. Seasonal metabolism and biochemical composition of two unionid mussels, Actinonaias ligamentina and Amblema plicata. Journal of Molluscan Studies 67: 407–416.

    Google Scholar 

  • Bogan, A. E., 1993. Freshwater bivalve extinctions (Mollusca: Unionidae): a search for causes. American Zoologist 33: 599–609.

    Google Scholar 

  • Bronmark, C. & B. Malmqvist, 1982. Resource partitioning between unionid mussels in a Swedish lake outlet. Holarctic Ecology 5: 389–395.

    Google Scholar 

  • Caraco, N. F., J. J. Cole, P. A. Raymond, D. L. Strayer, M. L. Pace, S. E. G. Findlay & D. T. Fischer, 1997. Zebra mussel invasion in a large, turbid river: phytoplankton response to increased grazing. Ecology 78: 588–602.

    Google Scholar 

  • Cardinale, J. B., K. Nelson & M. A. Palmer, 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.

    Google Scholar 

  • Cardinale, B. J., M. A. Palmer & S. L. Collins, 2002. Species diversity enhances ecosystem functioning through interspeci c facilitation. Nature 415: 426–429.

    Google Scholar 

  • Carlton, J. T., J. K. Thompson, L. E. Schemel & F. H. Nichols, 1990. Remarkable invasion of San Francisco Bay (California, USA)by the Asian clam Potamocorbula amurensis. I.Introduction and dispersal. Marine Ecology Progress Series 66: 81–94.

    Google Scholar 

  • Cohen, R. R. H., P. V. Dresler, E. P. J. Phillips & R. L. Cory, 1984. The e. ect of the Asiatic clam, Corbicula. uminea, on phytoplankton of the Potomac River, Maryland. Limnology and Oceanography 29: 170–180.

    Google Scholar 

  • Coughlan, J., 1969. The estimation of ltering rate from the clearance of suspension. Marine Biology 2: 356–358.

    Google Scholar 

  • Dame, R. F., 1996. Ecology of Marine Bivalves: An Ecosystem Approach. CRC Press, New York.

    Google Scholar 

  • Davis, W. R., A. D. Christian & D. J. Berg, 2000. Nitrogen and phosphorus cycling by freshwater mussels in a headwater stream ecosystem. In Tankersley, R. A., D. I. Warmolts, G. T. Watters, B. J. Armitage, P. D. Johnson & R. S. Butler (eds), Freshwater Mollusk Symposium Proceedings: Part II, Musseling in on Biodiversity. Ohio Biological Survey Special Publication, Columbus, Ohio: 141–151.

    Google Scholar 

  • DiDonato, G. T., 1998. An experimental investigation of interactions between two freshwater mussels, Elliptio waccamawensis and Leptodea ochracea, in Lake Waccamaw, North Carolina: e. ects of scale and environment. Ph. D. Dissertation. University of North Carolina, Chapel Hill, North Carolina.

    Google Scholar 

  • Dietz, T. H., 1985. Ionic regulation in freshwater mussels: a brief review. American Malacological Bulletin 2: 233–242.

    Google Scholar 

  • Gido, K. B. & W. J. Matthews, 2000. Ecosystem e. ects of water column minnows in experimental streams. Oecologia 126: 247–253.

    Google Scholar 

  • Hakenkamp, C. C. & M. A. Palmer, 1999. Introduced bivalves in freshwater ecosystems: the impact of Corbicula on organic matter cycling in a sandy stream. Oecologia 119: 445–451.

    Google Scholar 

  • Hakenkamp, C. C., S. G. Ribblett, M. A. Palmer, C. M. Swan, J. W. Reid & M. R. Goodison, 2001. The impact of an introduced bivalve (Corbicula. uminea )on the benthos of a sandy stream. Freshwater Biology 46: 491–501.

    Google Scholar 

  • Hart, D. D. & C. M. Finelli, 1999. Physical-biological coupling in streams: the pervasive e. ects of. ow on benthic organisms. Annual Review of Ecology and Systematics 30: 363–395.

    Google Scholar 

  • Heubner, J. D., 1982. Seasonal variation in two species of unionid clams from Manitoba, Canada: Respiration. Canadian Journal of Zoology 60: 650–654.

    Google Scholar 

  • Holland-Bartels, L. E., 1990. Physical factors and their in. uence on the mussel fauna of a main channel border habitat of the upper Mississippi River. Journal of the North American Benthological Society 9: 327–335.

    Google Scholar 

  • Iglesias, J. I. P., M. B. Urrutia, E. Navarro & I. Ibarrola, 1998. Measuring feeding and absorption in suspension-feeding bivalves: an appraisal of the biodeposition method. Journal of Marine Biology and Ecology 219: 71–86.

    Google Scholar 

  • James, M. R., 1987. Ecology of the freshwater mussel Hydridella mensiesi (Gray)in a small oligotrophic lake. Archiv für Hydrobiologie 108: 337–348.

    Google Scholar 

  • Jaramillo, E., C. Bertran & A. Bravo, 1992. Mussel biodeposition in an estuary in southern Chile. Marine Ecology Progress Series 82: 85–94.

    Google Scholar 

  • Jonsson, M. & B. Malmqvist, 2000. Ecosystem process rate increases with animal species richness. Oikos 89: 519–523.

    Google Scholar 

  • Kat, P. W., 1984. Parasitism and the Unionaceae (Bivalvia). Biological Review 59: 189–207.

    Google Scholar 

  • Kryger, J. & H. H. Riisgård, 1988. Filtration rate capacities in six species of European freshwater bivalves. Oecologia 77: 34–38.

    Google Scholar 

  • Lamberti, G. A. & A. D. Steinman, 1993. Research in arti cial streams: applications, uses and abuses. Journal of the North American Benthological Society 12: 313–384.

    Google Scholar 

  • Lauritsen, D. D. & S. C. Mozley, 1989. Nutrient excretion by the Asiatic clam Corbicula. uminea. Journal of the North American Benthological Society 8: 134–139.

    Google Scholar 

  • Layzer, J. B., M. E. Gordon & R. M. Anderson, 1993. Mussels: the forgotten fauna of regulated rivers: a case study of the Caney Fork River. Regulated Rivers: Research and Management 8: 63–71.

    Google Scholar 

  • Lei, J., B. S. Payne & S. Y. Wang, 1996. Filtration dynamics of the zebra mussel, Dreissen polymorpha. Canadian Journal of Fisheries and Aquatic Sciences 53: 29–37.

    Google Scholar 

  • MacIsaac, H. J., 1996. Potential abiotic and biotic impacts of zebra mussels on the inland waters of North America. American Zoologist 36: 287–299.

    Google Scholar 

  • Master, L. L. & S. R. Flack (eds), 1998. Rivers of Life: Critical Watersheds for Protecting Freshwater Biodiversity. The Nature Conservancy, Arlington, VA.

  • Matiso., G., Fisher, J. G. & S. Matis, 1985. Effect of Microinvertebrates on the Exchange of Solutes between Sediments and Freshwater. Hydrobiologia 122: 19–33.

    Google Scholar 

  • McMahon, R. F. & A. E. Bogan, 2001. Mollusca: Bivalvia. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classi cation of North American Freshwater Invertebrates, 2nd edn.Academic Press, New York: 331–429.

    Google Scholar 

  • Mellina, E., J. B. Rasmussen & E. L. Mills, 1995. Impact of zebra mussel (Dreissena polymorpha )on phosphorus cycling and chlorophyll in lakes. Canadian Journal of Fisheries and Aquatic Sciences 52: 2553–2573.

    Google Scholar 

  • Nalepa, T. F., W. S. Gardner & J. M. Malczyk, 1991. Phosphorus cycling by mussels (Unionidae: Bivalvia)in Lake St. Clair. Hydrobiologia 219: 230–250.

    Google Scholar 

  • Navarro, J. M. & R. J. Thompson, 1997. Biodeposition by the horse mussel Modiolus modiolus (Dillwyn)during the spring diatom bloom. Journal of Experimental Marine Biology and Ecology 209: 1–13.

    Google Scholar 

  • Negus, C., 1966. A quantitative study of the growth and production of unionid mussels in the River Thames at Reading. Journal of Animal Ecology 35: 513–532.

    Google Scholar 

  • Neves, R. J., A. E. Bogan, J. Williams, S. A. Ahlstedt & P. W. Hart eld, 1997. Status of the aquatic mollusks in the southeastern United States: a downward spiral of diversity.In Benz, G. W. & D. E. Collins (eds), Aquatic Fauna in Peril: The Southeastern Perspective. Special Publication 1, Southeast Aquatic Research Institute: 43–86.

    Google Scholar 

  • Nichols, F. H. & D. Garling. 2000. Food-web dynamics and trophic-level interactions in a multispecies community of freshwater unionids. Canadian Journal of Zoology 78: 871–882.

    Google Scholar 

  • Nichols, F. H., J. K. Thompson & L. E. Schemel, 1990. Remarkable invasion of San Francisco Bay (California, USA)by the Asian clam Potamocorbula amurensis. II. Displacement of a former community. Marine Ecology Progress Series 66: 95–101.

    Google Scholar 

  • Parmalee, P. W. & A. E. Bogan, 1998. The Freshwater Mussels of Tennessee. University of Tennessee Press, Knoxville. Paterson, C. G., 1984. A technique for determining apparent selective ltration in the freshwater bivalve Elliptio complanata (Lightfoot). Veliger 27: 238–241.

    Google Scholar 

  • Payne, B. S., J. Lei, A. C. Miller & E. D. Hubertz, 1995. Adaptive variation in palp and gill size of the zebra mussel (Dreissena polymorpha )and Asian clam (Corbicula. uminea ). Canadian Journal of Fisheries and Aquatic Sciences 52: 1130–1134.

    Google Scholar 

  • Phelps, H. L., 1994. The Asiatic clam (Corbicula. uminea ): invasion and system-level ecological change in the Potomac River estuary near Washington, DC. Estuaries 17: 614–621.

    Google Scholar 

  • Potts, W. T. W., 1954. The rate of urine production of Anodonta cygnaea. Journal of Experimental Biology 31: 614–617.

    Google Scholar 

  • Raikow, D. F. & S. K. Hamilton, 2000. Bivalve diets in a midwestern US stream: a stable isotope enrichment study. Limnology and Oceanography 46: 514–522.

    Google Scholar 

  • Roditi, H. A., D. L. Strayer & S. E. G. Findlay, 1997. Characteristics of zebra mussel (Dreissena polymorpha )biodeposits in a tidal freshwater estuary. Archiv für Hydrobiologie 140: 207–219.

    Google Scholar 

  • Scheiner, S. M. & J. Gurevitch, 1993. Design and Analysis of Ecological Experiments. Chapman and Hall, New York.

  • Schaus, M. H., M. J. Vanni, T. E. Wissing, M. T. Bremigan, J. E. Garvey & R. A. Stein, 1997. Nitrogen and phosphorous excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography 42: 1386–1397

    Google Scholar 

  • Silverman, H., E. C. Achberger, J. W. Lynn & T. H. Dietz, 1995. Filtration and utilization of laboratory-cultured bacteria by Dreissena polymorpha, Corbicula. uminea, and Carunculina texasensis. Biological Bulletin 189: 308–319.

    Google Scholar 

  • Silverman, H., S. J. Nichols, J. S. Cherry, E. Archberger, J. W. Lynn & T. H. Dietz, 1997. Clearance of laboratory-cultured bacteria by freshwater bivalves: differences between lentic and lotic unionids. Canadian Journal of Zoology 75: 1857–1866

    Google Scholar 

  • Sokal, R. R. & F. J. Rohlf, 1995. Biometry, 3rd edn. W. H. Freeman Co.

  • Spooner, D. E., 2002. A eld experiment examining the e. ects of freshwater mussels (Unionidae)on sediment ecosystem function. M. S. Thesis, University of Oklahoma, Norman.

  • Stewart, T. W., J. G. Miner & R. L. Lowe. 1998. Quantifying mechanisms for zebra mussel effects on benthic macroinvertebrates: organic matter production and shell-generated habitat. Journal of the North American Benthological Society 17: 81–94.

    Google Scholar 

  • Strayer, D. L., 1981. Notes on the microhabitats of unionid mussels in some Michigan streams. American Midland Naturalist 106: 411–415.

    Google Scholar 

  • Strayer, D. L., 1999. Effects of alien species on freshwater mollusks in North America. Journal of the North American Benthological Society 18: 74–98.

    Google Scholar 

  • Strayer, D. L. & J. Ralley, 1993. Microhabitat use by an assemblage of stream-dwelling unionaceans (Bivalvia), including two rare species of Alasmidonta. Journal of the North American Benthological Society 12: 247–258.

    Google Scholar 

  • Strayer, D. L., D. C. Hunter, L. C. Smith & C. K. Borg, 1994. Distribution, abundance, and roles of freshwater clams (Bivalvia, Unionidae)in the freshwater tidal Hudson River. Freshwater Biology 31: 239–248.

    Google Scholar 

  • Strayer, D. L., N. F. Caraco, J. F. Cole, S. Findlay & M. L. Pace, 1999. Transformation of freshwater ecosystems by bivalves. BioScience 49: 19–27.

    Google Scholar 

  • Vanderploeg, H., L. Liebig, W. Carmichael, M. Agy, T. Johengen, G. Fahnenstiel & T. Nalepa, 2001. Zebra mussel (Dreissena polymorpha )selective ltration promoted toxic Microcystis blooms in Saginaw Bary (Lake Huron)and Lake Erie. Canadian Journal of Fisheries and Aquatic Sciences 58: 1208–1221.

    Google Scholar 

  • Vaughn, C. C., 1997. Regional patterns of mussel species distributions in North American rivers. Ecography 20: 107–115.

    Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Google Scholar 

  • Vaughn, C. C. & M. Pyron, 1995. Population ecology of the endangered Ouachita Rock Pocketbook Mussel, Arkansia wheeleri (Bivalvia: Unionidae), in the Kiamichi River, Oklahoma. American Malacological Bulletin 11: 145–151.

    Google Scholar 

  • Vaughn, C. C. & C. M. Taylor, 1999. Impoundments and the decline of freshwater mussels: a case study of an extinction gradient. Conservation Biology 13: 912–920.

    Google Scholar 

  • Vaughn, C. C. & C. M. Taylor, 2000. Macroecology of a hostparasite relationship. Ecography 23: 11–20.

    Google Scholar 

  • Vaughn, C. C., C. M. Mather, M. Pyron, P. Mehlhop & E. K. Miller, 1996. The current and historical mussel fauna of the Kiamichi River, Oklahoma. Southwestern Naturalist 41: 325–328.

    Google Scholar 

  • Vaughn, C. C., C. M. Taylor & K. J. Eberhard, 1997. A comparison of the e. ectiveness of timed searches vs. quadrat sampling in mussel surveys. In Cummings, K. S., A. C. Buchanan, C. A. Mayer & T. J. Naimo (eds), Conservation and Management of Freshwater Mussels II: Initiatives for the Future. Proceedings of a UMRCC Symposium, 16-18 October 1995, St. Louis, Missouri. Upper Mississippi River Conservation Committee, Rock Island, Illinois: 157–162.

  • Welker, M. & N. Walz, 1998. Can mussels control the plankton in rivers?-a planktological approach applying a Lagrangian sampling strategy. Limnology and Oceanography 43: 753–762.

    Google Scholar 

  • Wellnitz, T. & N. L. Po., 2001. Functional redundancy in heterogenous environments: implications for conservation. Ecology Letters 4: 177–179.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 1991. Limnological Analyses. Springer, New York.

    Google Scholar 

  • Williams, C. J. & R. F. McMahon, 1989. Annual variation of tissue biomass and carbon and nitrogen content in the freshwater bivalve, Corbicula. uminea, relative to downstream dispersal. Canadian Journal of Zoology 67: 82–90.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaughn, C.C., Gido, K.B. & Spooner, D.E. Ecosystem Processes Performed by Unionid Mussels in Stream Mesocosms: Species Roles and Effects of Abundance. Hydrobiologia 527, 35–47 (2004). https://doi.org/10.1023/B:HYDR.0000043180.30420.00

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:HYDR.0000043180.30420.00

Navigation