Skip to main content
Log in

Sperm Size Evolution in Drosophila: Inter- and Intraspecific Analysis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Numerous reports were devoted to the variation of sperm length in relation to sperm competition amongst species. However, studies on intraspecific variations of sperm size are very scarce and the number of sperm measured, very limited. This paper investigates within-individual, between-individual and between-population variation of sperm length in the two cosmopolitan species, D. simulans and D. melanogaster. Sperm length distributions are completely discriminated against with these two species, with the mean values equal to 1.121 ± 0.002 and 1.989 ± 0.008 mm, respectively. Results of intraspecific variation show a contrasting pattern between the two species. The mode of sperm length distributions is much less variable in D. simulans than in D. melanogaster. The sperm size divergence is unaffected whenever the two species are in sympatry (tested at ‘Evolution Canyon’, Mount Carmel, Israel) or in allopatry, but the two species react differentially to abiotic local factors. D. melanogaster, in contrast to D. simulans, shows a clinal pattern in sperm size associated with drought. We discussed this pattern in relation to the potential role of sperm length in the ongoing process of non-random mating and incipient sympatric speciation observed in this locality in D. melanogaster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alonso-Pimentel, H., L.P. Tolbert & W.B. Heed, 1994. Ultrastructural examination of the insemination reaction in Drosophila. Cell Tiss. Res. 275: 467–476.

    Google Scholar 

  • Ashburner, M., 1989. Drosophila, 434pp. in A Laboratory Handbook. Cold Spring Harbor Laboratory Press.

  • Baba-Aissa, F. & M. Solignac, 1984. La plupart des populations de Drosophila simulans ont probablement pour ancêtre une femelle unique dans un passé récent. C. R. Acad. Sci. Paris 299, Ser III: 289–292.

    Google Scholar 

  • Baccetti, B., B.H. Gibbons & I.R. Gibbons, 1989. Bidirectional swimming in spermatozoa of tephritid flies. J. Submicrosc. Cytol. Pathol. 21: 619–625.

    Google Scholar 

  • Barbash, D.A., J. Roote & M. Ashburner, 2000. The Drosophila melanogaster Hybrid male rescue gene causes inviability in male and female species hybrids. Genetics 154: 1747–1771.

    Google Scholar 

  • Beatty, R.A. & N.S. Sidhu, 1967. Spermatozoan nucleus length in three strains of Drosophila melanogaster. Heredity 22: 65–82.

    Google Scholar 

  • Beatty, R.A. & N.S. Sidhu, 1970. Polymegaly of spermatozoan length and its genetic control in Drosophila species. Proc. Roy. Soc. Edinb. Soc. B 71: 14–28.

    Google Scholar 

  • Bircher, U. & E. Hauschteck-Jungen, 1997. The length of the sperm nucleus in Drosophila obscura group species is depending on the total length of the sperm. Invert. Reprod. Develop. 32: 225–229.

    Google Scholar 

  • Bressac, C. & E. Hauschteck-Jungen, 1996. Drosophila subobscura females preferentially select long sperm for storage and use. J. Insect Physiol. 42: 323–328.

    Google Scholar 

  • Bressac, C., D. Joly, J. Devaux & D. Lachaise, 1991a. Can we predict the mating pattern of Drosophila females from the sperm length distribution in males? Experientia 47: 111–114.

    Google Scholar 

  • Bressac, C., D. Joly, J. Devaux, C. Serres, D. Feneux & D. Lachaise, 1991b. Comparative kinetics of short and long sperm in sperm dimorphic Drosophila species. Cell Motility Cytoskel. 19: 269–274.

    Google Scholar 

  • Briskie, J.V. & R. Montgomerie, 1992. Sperm size and sperm competition in birds. Proc. Roy. Soc. Lond. B 247: 89–95.

    Google Scholar 

  • Briskie, J.V., R. Montgomerie & T.R. Birkhead, 1997. The evolution of sperm size in birds. Evolution 51: 937–945.

    Google Scholar 

  • Capy, P., J.R. David, Y. Carton, E. Pla & J. Stockel, 1987. Grape breeding Drosophila communities in southern France: short range variation in ecological and genetical structure of natural populations. Acta Oecol., Oecol. Gen. 8: 435–440.

    Google Scholar 

  • Capy, P., M. Veuille, M. Paillette, J.-M. Jallon, J. Vouidibio & J.R. David, 1999. Sexual isolation of genetically differentiated sympatric populations of Drosophila melanogaster in Brazzaville, Congo: the first step towards speciation? Heredity 84: 468–475.

    Google Scholar 

  • Cazemajor, M., D. Joly & C. Montchamp-Moreau, 2000. Sex-ratio meiotic drive in Drosophila simulans is related to equational nondisjunction of the Y chromosome. Genetics 154: 229–236.

    Google Scholar 

  • Civetta, A., 1999. Direct visualization of sperm competition and sperm storage in Drosophila. Curr. Biol. 12: 841–844.

    Google Scholar 

  • Civetta, A. & A.G. Clark, 2000. Chromosomal effects on male and female components of sperm precedence in Drosophila. Genet. Res. Camb. 75: 143–151.

    Google Scholar 

  • Clark, A.G. & D.J. Begun, 1998. Female genotypes affect sperm displacement in Drosophila. Genetics 149: 1487–1493.

    Google Scholar 

  • Clark, A.G., M. Aguadé, T. Prout, L.G. Harshman & C.H. Langley, 1995. Variation in sperm displacement and its association with accessory gland protein loci in Drosophila melanogaster. Genetics 139: 189–201.

    Google Scholar 

  • Clark, A.G., D.J. Begun & T. Prout, 1999. Female ?male interactions in Drosophila sperm competition. Science 283: 217–220.

    Google Scholar 

  • Collins, A.M., 2000. Relationship between semen quality and performance of instrumentally inseminated honey bee queens. Apidologie 31: 421–429.

    Google Scholar 

  • Coyne, J.A., 1992. Genetics and speciation. Nature 355: 511–515.

    Google Scholar 

  • Coyne, J.A. & H.A. Orr, 1998. The evolutionary genetics of speciation. Philos. Trans. Roy. Soc. B. 353: 287–305.

    Google Scholar 

  • Dobzhansky, T., 1934. Studies on hybrid sterility. I. Spermatogenesis in pure and hybrid Drosophila pseudoobscura. Z. Zellforsch. Mikrosk. Anat. 21: 169–223.

    Google Scholar 

  • Dobzhansky, T., 1937. Genetics and the Origin of Species. Columbia University Press, New York.

    Google Scholar 

  • Gomendio, M. & E.R.S. Roldan, 1991. Sperm competition influences sperm size in mammals. Proc. Roy. Soc. Lond. B 243: 181–185.

    Google Scholar 

  • Gromko, M.H., D.G. Gilbert & R.C. Richmond, 1984. Sperm transfer and use in the multiple mating system of Drosophila, pp. 371–426 in Sperm Competition and the Evolution of Animal Mating Systems, edited by R.L. Smith. Academic Press, New York.

    Google Scholar 

  • Hanna, P.J., W. Liebrich & O. Hess, 1982. Spermatocytes in Drosophila not appearing to be produced by synchronous divisions of definitive spermatogonia. Dros. Inf. Serv. 58: 72–73.

    Google Scholar 

  • Harry, M., E. Rashkovetsky, T. Pavlicek, B.S.E.M. Derzhavets, P. Capy, M.L. Cariou, D. Lachaise, N. Asada & E. Nevo, 1999. Fine-scale biodiversity of Drosophilidae in 'Evolution Canyon' at the Lower Nahal Oren microsite, Israel. Biol. Bratislava 54: 685–705.

    Google Scholar 

  • Hatsumi, M. & K.I. Wakahama, 1986. The sperm length and the testis length in Drosophila nasuta subgroup. Jpn. J. Genet. 61: 241–244.

    Google Scholar 

  • Hihara, F. & H. Kurokawa, 1987. The sperm length and the internal reproductive organs of Drosophila with special references to phylogenetic relationships. Zool. Sci. 4: 167–174.

    Google Scholar 

  • Hosken, D.J., 1997. Sperm competition in bats. Proc. Roy. Soc. Lond. B 264: 385–392.

    Google Scholar 

  • Hunter, F.M. & T.R. Birkhead, 2002. Sperm viability and sperm competition in insects. Curr. Biol. 12: 121–123.

    Google Scholar 

  • Iliadi, K., N. Iliadi, E. Rashkovetsky, I. Minkov, E. Nevo & A. Korol, 2001. Sexual and reproductive behaviour of Drosophila melanogaster from a microclimatically interslope differentiated population of 'Evolution Canyon' (Mount Carmel, Israel). Proc. Roy. Soc. Lond. B 268: 2365–2374.

    Google Scholar 

  • Inoue, Y., T.K. Watanabe & M. Watada, 1990. Natural and laboratory hybridization between Drosophila melanogaster and Drosophila simulans. Jpn. J. Genet. 65: 47–51.

    Google Scholar 

  • Joly, D., 1987. Between species divergence of cyst length distributions in the Drosophila melanogaster species complex. Jpn. J. Genet. 62: 257–263.

    Google Scholar 

  • Joly, D. & C. Bressac, 1994. Sperm length in Drosophilidae (Diptera): estimation by testis and receptacle length. Int. J. Insect Morphol. Embryol. 23: 85–92.

    Google Scholar 

  • Joly, D. & D. Lachaise, 1994. Polymorphism in the sperm heteromorphic species of the Drosophila obscura group. J. Insect Physiol. 40: 933–938.

    Google Scholar 

  • Joly, D., C. Bressac, J. Devaux & D. Lachaise, 1991. Sperm length diversity in Drosophilidae. Dros. Inf. Serv. 72: 104–108.

    Google Scholar 

  • Joly, D., M.-L. Cariou & D. Lachaise, 1991. Can sperm competition explain sperm polymorphism in Drosophila teissieri? Evol.Biol. 5: 25–44.

    Google Scholar 

  • Joly, D., C. Bressac & D. Lachaise, 1995. Disentangling giant sperm. Nature 377: 202.

    Google Scholar 

  • Joly, D., C. Bazin, L.-W. Zeng & R.S. Sing, 1997. Genetic basis of sperm and testis length differences and epistatic effect on hybrid inviability and sperm motility between Drosophila simulans and Drosophila sechellia. Heredity 78: 354–362.

    Google Scholar 

  • Karr, T.L., 1991. Intracellular sperm/egg interactions in Drosophila: a three-dimensional structural analysis of a paternal product in the developing egg. Mech. Develop. 34: 101–112.

    Google Scholar 

  • Karr, T.L., 1996. Paternal investment and intracellular sperm-egg interactions during and following fertilization in Drosophila. Curr. Top. Dev. Biol. 34: 89–115.

    Google Scholar 

  • Karr, T.L. & S. Pitnick, 1996. The ins and outs of fertilization. Nature 379: 405–406.

    Google Scholar 

  • King, R.C. & J. Büning, 1985. The origin and functioning of insect oocytes and nurse cells, pp. 37–82 in Comprehensive Insect Physiology, Biochemistry and Pharmacology, edited by G.A. Kerkut & L.I. Gilbert. Pergamon Press, Oxford.

    Google Scholar 

  • Korol, A., E. Rashkovetsky, K. Iliadi, P. Michalak, Y. Ronin & E. Nevo, 2000. Nonrandom mating in Drosophila melanogaster laboratory populations derived from closely adjacent ecologically contrasting slopes at 'Evolution Canyon'. Proc. Natl. Acad. Sci. USA 97: 12637–12642.

    Google Scholar 

  • Kurokawa, H. & F. Hihara, 1976. Number of first spermatocytes in relation to phylogeny of Drosophila (Diptera: Drosophilidae). Int. J. Insect Morphol. Embryol. 5: 51–63.

    Google Scholar 

  • Lachaise, D., J.R. David, F. Lemeunier, L. Tsacas & M. Ashburner, 1986. The reproductive relationships of Drosophila sechellia with D. mauritiana, D. simulans, and D. melanogaster from the afrotropical region. Evolution 40: 262–271.

    Google Scholar 

  • LaMunyon, C.W. & S.Ward, 1999. Evolution of sperm size in nematodes: sperm competition favours larger sperm. Proc. Roy. Soc. Lond. B 266: 263–267.

    Google Scholar 

  • Lindsley, D.L. & K.T. Tokuyasu, 1980. Spermatogenesis, pp. 225–294 in The Genetics and Biology of Drosophila, edited by M. Ashburner & T.R.F.Wright. Academic Press, London.

    Google Scholar 

  • Lung, O. & M.F. Wolfner, 2001. Identification and characterization of the major Drosophila melanogaster mating plug protein. Insect Biochem. Mol. Biol. 31: 543–551.

    Google Scholar 

  • Markow, T.A., 1982. Mating systems of cactophilic Drosophila, pp. 273–287 in Ecological Genetics and Evolution: the Cactus-Yeast-Drosophila Model, edited by J.S.F. Baker & W.T. Starmer. Academic Press, Australia, Oracle, Arizona, January 4-8.

    Google Scholar 

  • Markow, T.A., 1996. Evolution of Drosophila mating systems. Evol. Biol. 29: 73–106.

    Google Scholar 

  • Michalak, P., I. Minkow, A. Helin, D.N. Lerman, B.R. Bettencourt, M.E. Feder, A.B. Korol & E. Nevo, 2001. Genetic evidence for adaptation-driven incipient speciation of Drosophila melanogaster along a microclimatic contrast in 'Evolution Canyon', Israel. Proc. Natl. Acad. Sci. USA 6: 13195–13200.

    Google Scholar 

  • Morin, J.-P., B. Moreteau, G. Pétavy & J.R. David, 1999. Divergence of reaction norms of size characters between tropical and temperate populations of Drosophila melanogaster and D. simulans. J. Evol. Biol. 12: 329–339.

    Google Scholar 

  • Morrow, E.H. & M.J.G. Gage, 2000. The evolution of sperm length in moths. Proc. Roy. Soc. Lond. B 267: 307–313.

    Google Scholar 

  • Morrow, E.H. & M.J.G. Gage, 2001. Artificial selection and heritability of sperm length in Gryllus bimaculatus. Heredity 87: 356–362.

    Google Scholar 

  • Nevo, E., 1995. Asian, African and European biota meet at 'Evolution Canyon' Israel: local tests of global diversity and genetic diversity patterns. Proc. Roy. Soc. Lond. B B262: 149–155.

    Google Scholar 

  • Nevo, E., 1997. Evolution in action across phylogeny caused by microclimatic stresses at 'Evolution Canyon'. Theor. Pop. Biol. 52: 231–243.

    Google Scholar 

  • Nevo, E., 1999. Mosaic Evolution of Subterranean Mammals: Regression, Progression and Global Convergence. Oxford University Press, New York.

    Google Scholar 

  • Nevo, E., 2001. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA 98: 6233–6240.

    Google Scholar 

  • Nevo, E., E. Rashkovetsky, T. Pavlicek & A. Korol, 1998. A complex adaptive syndrome in Drosophila caused by microclimatic contrasts. Heredity 80: 9–16.

    Google Scholar 

  • Otronen, M., P. Reguera & P.I. Ward, 1997. Sperm storage in the yellow dung fly Scathophaga stercoraria: identifying the sperm of competing males in separate female spermathecae. Ethology 103: 844–854.

    Google Scholar 

  • Peng, Y.S., S.J. Locke, M.E. Nasr, T.P. Liu & M.A. Montague, 1990. Differential staining for live and non viable sperm of honey bees. Physiol. Entomol. 15: 211–217.

    Google Scholar 

  • Perotti, M.E., 1969. Ultrastructure of the mature sperm of Drosophila melanogaster Meig. J. Submicr. Cytol. 1: 171–196.

    Google Scholar 

  • Pitnick, S., 1996. Investment in testes and the cost of making long sperm in Drosophila. Am. Natur. 148: 57–80.

    Google Scholar 

  • Pitnick, S. & G.T.Miller, 2000. Correlated response in reproductive and life history traits to selection on testis length in Drosophila hydei. Heredity 84: 416–426.

    Google Scholar 

  • Pitnick, S. & T.A. Markow, 1994a. Large-male advantages associated with costs of sperm production in Drosophila hydei, a species with giant sperm. Proc. Natl. Acad. Sci. USA 91: 9277–9281.

    Google Scholar 

  • Pitnick, S. & T.A. Markow, 1994b. Male gametic strategies: sperm size, testes size, and the allocation of ejaculate among successive mates by the sperm-limited fly Drosophila pachea and its relatives. Am. Natur. 143: 785–819.

    Google Scholar 

  • Pitnick, S., T.A. Markow & G.S. Spicer, 1995. Delayed male maturity is a cost of producing large sperm in Drosophila. Proc. Natl. Acad. Sci. USA 92: 10614–10618.

    Google Scholar 

  • Pitnick, S., G.S. Spicer & T.A. Markow, 1995. How long is a giant sperm? Nature 375: 109.

    Google Scholar 

  • Prout, T. & J. Bundgaard, 1977. The population genetics of sperm displacement. Genetics 85: 95–124.

    Google Scholar 

  • Roff, D.A., 1997. Evolutionary Quantitative Genetics. Chapman & Hall, New York.

    Google Scholar 

  • Roldan, E.R.S., M. Gomendio & A.D. Vitullo, 1992. The evolution of eutherian spermatozoa and underlying selective forces: female selection and sperm competition. Biol. Rev. 67: 551–593.

    Google Scholar 

  • Sanger, W.G. & D. Miller, 1973. Spermatozoan length in species of the Drosophila affinis subgroup. Am. Midl. Nat. 90: 485–489.

    Google Scholar 

  • Solignac, M. & M. Monnerot, 1986. Mitochondrial DNA evolution in the melanogaster species subgroup of Drosophila. J. Mol. Evol. 23: 31–40.

    Google Scholar 

  • Sperlich, D., 1962. Hybrids between Drosophila melanogaster and Drosophila simulans in nature. Dros. Inf. Serv. 36: 118.

    Google Scholar 

  • Thoday, J.M. & J.B. Gibson, 1962. Isolation by disruptive selection. Nature 193: 1164–1166.

    Google Scholar 

  • Tracey, M.L., O.A. Pavlovsky & M.M. Green, 1973. Hybridization of D. melanogaster and D. simulans. A frequency estimate. Dros. Inf. Serv. 50: 77.

    Google Scholar 

  • Ward, P.I., 1998. Intraspecific variation in sperm size characters. Heredity 80: 655–659.

    Google Scholar 

  • Ward, P.I., 2000. Sperm length is heritable and sex-linked in the yellow dung fly Scathophaga stercoraria (L.). J. Zool. 251: 349–353.

    Google Scholar 

  • Ward, P.I. & E. Hauschteck-Jungen, 1993. Variation in sperm length in the yellow dung fly Scathophaga stercoraria (L.). J. Insect Physiol. 39: 545–547.

    Google Scholar 

  • Watanabe, T.K., 1979. A gene that rescues the lethal hybrid between Drosophila melanogaster and Drosophila simulans. Jpn. J. Genet. 54: 325–331.

    Google Scholar 

  • Woolley, D.M., 1970. Selection for the length of the spermatozoan midpiece in the mouse. Genet. Res. Camb. 16: 261–275.

    Google Scholar 

  • Yanders, A.F. & J.P. Perras, 1963. Sperm length in four Drosophila species, corrected. Dros. Inf. Serv. 38: 145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joly, D., Korol, A. & Nevo, E. Sperm Size Evolution in Drosophila: Inter- and Intraspecific Analysis. Genetica 120, 233–244 (2004). https://doi.org/10.1023/B:GENE.0000017644.63389.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:GENE.0000017644.63389.57

Navigation