Skip to main content
Log in

Impact of habitat fragmentation on genetic population structure of roach, Rutilus rutilus, in a riparian ecosystem

  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

During the last 200 years, the riparianecosystem along major rivers has been reducedto a few scattered remnants. Important elementsof the riparian ecosystem are water bodieswhich were originally connected to the mainriver channel by annual floodings. Due to riverregulations many of these remnants are nowvirtually isolated. In an allozyme analysisusing roach, Rutilus rutilus, as a studyspecies we demonstrate that the geneticdiversity (number of alleles per locus,expected heterozygosity) of populations livingwithin floodplain water bodies is not severelyimpoverished compared to the genetic diversitywithin the main river channel. However, wefound slight differences in the allelefrequencies of flood plain water bodies and themain river channel. Nevertheless, fishpopulations in floodplain water bodies mayserve as reservoirs of autochthonous geneticmaterial for restoration of fish populations inthe main river channel after populationextinction due to catastrophic accidents (e.g.industrial pollution).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baade U, Fredrich F (1998) Movement and pattern of activity of the roach in the River Spree, Germany. J. Fish Biol., 52, 1165–1174.

    Article  Google Scholar 

  • Banarescu P (1991) Zoogeography of fresh waters. Vol. 2. Distribution and Dispersal of Freshwater Animals in North America and Eurasia. Aula Verlag, Wiesbaden.

    Google Scholar 

  • Belkhir K, Borsa P, Goudet J, Chikli L, Bonhomme F (2000) GENETIX, logiciel sous WindowsTM pour la génétique des populations, version 4.01. University of Montpellier II, Montpellier.

    Google Scholar 

  • Bernatchez L, Chouinard A, Lu GQ (1999) Integrating molecular genetics and ecology in studies of adaptive radiation: Whitefish, Coregonus sp., as a case study. 68, 173–194.

    Google Scholar 

  • Bornette G, Amoros C, Lamouroux N (1998) Aquatic plant diversity in riverine wetlands: The role of connectivity. Freshwater Biol., 39, 267–283.

    Article  Google Scholar 

  • Bouvet Y, Bobin M, Maslin JL, Pattee E (1995) The genetic structure of roach populations in two contrasted large rivers. Hydrobiologia, 303, 229–234.

    Google Scholar 

  • Bouvet Y, Soewardi K, Pattee E (1991) The discrimination of roach Rutilus rutilus (Linnaeus, 1758) populations in different parts of a river system. An investigation using biochemical markers. Hydrobiologia, 209, 161–167.

    Google Scholar 

  • Brauckmann U, Jöchle G, Pinter I, Schmitz W, Vobis H (1987) Der ökologische Zustand des Rheins nach dem Sandoz-Unfall. Landesamt für Umweltschutz, Institut fur Wasser und Abfallwirtschaft, Bonn.

    Google Scholar 

  • Bravard JP, Amoros C, Pautou C (1986) Impact of civil engineering works on the successions of communities in a fluvial system: A methodological and predictive approach applied to a section of the Upper Rhone. Oikos, 47, 92–111.

    Google Scholar 

  • Brookes A (1988) Channelised Rivers: Perspectives for Environmental Management. John Wiley & Sons, Inc., Chichester.

    Google Scholar 

  • Carvalho G (1993) Evolutionary aspects of fish distribution: Genetic variability and adaptation. J. Fish Biol., 43, 53–73.

    Google Scholar 

  • Carvalho GR, van Oosterhout C, Hauser L, Magurran AE (2003) Measuring genetic variation in wild populations: From molecular markers to adaptive traits. In: Genes in the Environment (eds. Hails AS, Beringer JE, Godfray HCJ). Blackwell Science Ltd, Oxford, UK.

    Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144, 2001–2014.

    CAS  PubMed  Google Scholar 

  • Felsenstein J (1993) PHYLIP (Phylogeny Inference Package), version 3.5c. Department of Genetics, University ofWashington, Seattle.

    Google Scholar 

  • Frankham R (1996) Relationship of genetic variation to population size in wildlife. Cons. Biol., 10, 1500–1508.

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to Conservation Genetics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Gillespie RB, Guttmann SI (1989) Effects of contaminants on the frequency of allozymes in populations of the central stoneroller. Environ. Toxicol. Chem., 8, 309–317.

    CAS  Google Scholar 

  • Hänfling B, Brandl R (1998a) Genetic and morphological variation in a common European cyprinid, Leuciscus cephalus within and across central European drainages. J. Fish Biol., 52, 706–715.

    Google Scholar 

  • Hänfling B, Brandl R (1998b) Genetic differentiation of the bullhead Cottus gobio L. across watersheds in central Europe: Evidence for two taxa. Heredity, 80, 110–117.

    Article  Google Scholar 

  • Hänfling B, Brandl R (1998c) Genetic variability, population size and isolation of distinct populations in the freshwater fish Cottus gobio L. Mol. Ecol., 7, 1625–1632.

    Google Scholar 

  • Heithaus MR, Laushman RH (1997) Genetic variation and conservation of stream fishes: Influence of ecology, life history and water quality. Can. J. Fish. Aqu. Sci., 54, 1822–1836.

    Google Scholar 

  • Hillis DM, Moritz C, Mable BK (1996) Molecular Systematics. Sinauer Associates, Inc., Sunderland, MA, p. 655.

    Google Scholar 

  • Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can. J. Fish. Aquat. Sci., 48, 945–957.

    Google Scholar 

  • Ladiges W, Vogt D (1979) Die Süßwasserfische Europas. Bis zum Ural und Kaspischen Meer. Paul Parey Verlag, Hamburg.

    Google Scholar 

  • Laikre L, Ryman N (1996) Effects on intraspecific biodiversity from harvesting and enhancing natural populations. Ambio, 25, 504–509.

    Google Scholar 

  • Maitland PS, Lyle AA (1990) Practical conservation of British fishes: Current action on six declining species. J. Fish. Biol., 37A, 255–256.

    Google Scholar 

  • Maitland PS, Morgan NC (1997) Conservation Management of Freshwater Habitats. Lakes, Rivers and Wetlands. Chapman & Hall, London.

    Google Scholar 

  • Manly BFJ (1997) RT, a Program for Randomization Testing, version 2.1. West-Inc., Cheyenne/Wyoming.

    Google Scholar 

  • Mitsch WJ, Gosselink JG (2000) Wetlands, 3rd edn. John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Mitton JB, Koehn RK (1975) Genetic organisation and adaptive response of allozymes to ecological variables in Fundulus heteroclitus. Genetics, 79, 97–111.

    CAS  PubMed  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89, 583–590.

    Google Scholar 

  • Petts GE (1990) Forested river corridors: A lost resource. In: Water, Engineering and Landscape (eds. Cosgrove D, Petts GE), pp. 12–34. Belhaven Press, London.

    Google Scholar 

  • Place AR, Powers DA (1979) Genetic variation and relative catalytic efficiencies: Lactate dehydrogenase B allozymes of Fundulus heteroclitus. Proc. Nat. Acad. Sci. U.S.A., 76, 2354–2358.

    CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): A population genetic software for exact tests and ecumenicism. J. Hered., 86, 248–249.

    Google Scholar 

  • Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution, 55, 1095–1103.

    CAS  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv. Biol., 17, 230–237.

    Article  Google Scholar 

  • Ryman N, Utter F, Laikre L (1995) Protection of intraspecific biodiversity of exploited fishes. Rev. Fish. Biol. Fisher., 5, 417–446.

    Google Scholar 

  • Salyi G, Csaba G, Darin EG, Orosz E, Lang M, Majoros G, Kunsagi Z, Niklesz C (2000) Effect of thr cyanide and heavy metal pollution passed in the river Szamos and Tisza on the aquatic flora and fauna with special regard to the fish. Magyar Allatrvosok Lapja, 122, 493–497.

    CAS  Google Scholar 

  • Schneider S, Kueffer JM, Roessli D, Excoffier L (2000) Arlequin, a Software for Population Genetic Data Analysis, version 2.0. University of Geneva, Geneva.

    Google Scholar 

  • Selander RK, Smith MH, Young SY, Johnson WE, Gentry JB (1971) Biochemical polymorphism and systematics in the genus Peromyscus. Univ. Texas Pub., 7103, 49–90.

    Google Scholar 

  • Shaklee LB, Allendorf FW, Morizot DC, Whitt GS (1990) Gene nomenclature for protein-coding loci in fish. T. Am. Fish. Soc., 119, 2–15.

    CAS  Google Scholar 

  • Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evolution, 39, 53–65.

    Google Scholar 

  • Toner M, Keddy P (1997) River hydrology and riparian wetlands: A predictive model for ecological assembly. Ecol. Appl., 7, 236–246.

    Google Scholar 

  • Trockner K, Schiemer F (1997) Ecological aspects of the restoration strategy for a river-floodplain system on the river Danube in Austria. Global Ecol. Biogeogr., 6, 321–329.

    Google Scholar 

  • Vrijenhoek RC (1998) Conservation genetics of freshwater fish. J. Fish. Biol., 53, 394–412.

    Google Scholar 

  • Ward RD, Woodwark M, Skibinski DOF (1994) A comparison of genetic diversity levels in marine, freshwater and anadromous fish. J. Fish. Biol., 44, 213–232.

    Article  Google Scholar 

  • Weigers EL, Zinke A, Gurtzweiler K (1990) Present situation of the European floodplain forests. Forest Ecol. Manag., 33/34, 5–12.

    Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.

    Google Scholar 

  • Wolter C (1999) Comparison of intraspecific variability in four common cyprinids, Abramis brama, Abramis bjoerkna, Rutilus rutilus and Scardinius erythrophthalmus, within and between lowland river systems. Hydrobiologia, 394, 163–177.

    Article  CAS  Google Scholar 

  • Wolter C, Bischoff A, Tautenhahn M, Vilcinkas A (1999) The fish assemblage of the Lower Oder Valley: Species composition, abundances, stock development and fish ecological importance of the polder areas. In: Das Untere Odertal. Auswirkung der periodischen Ñberschwemmungen auf Biozönosen und Arten (eds. Dohle W, Bornkamm R, Weigmann G). Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hänfling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hänfling, B., Durka, W. & Brandl, R. Impact of habitat fragmentation on genetic population structure of roach, Rutilus rutilus, in a riparian ecosystem. Conservation Genetics 5, 247–257 (2004). https://doi.org/10.1023/B:COGE.0000030008.20492.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:COGE.0000030008.20492.2c

Navigation