Skip to main content
Log in

Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Well-controlled treatment with alkali solution causes the etching of HZSM-5 framework, which results in the formation of the new porosity and channel structure with the coexistence of micropores and mesopores, as evidenced by nitrogen adsorption experiments. The dissolution of the zeolite framework, as revealed by the investigation of solid-state NMR, begins from the crystalline site with Si–O–Si linkages. The inertness of the alkali treatment toward Si–O–Al bond in the framework preserves the specific Brønsted acid site that is defined to be the bridging OH species over Si–O–Al units in zeolite. The Mo-modified catalysts derived from the alkali treatments showed a very high catalytic performance in the conversion of methane to aromatics (MDA) when compared with the conventional Mo/HZSM-5 catalyst. The unique selectivity to aromatics and stability of the catalysts derived from the alkali-treated ZSM-5 are attributed to the coexistence of mesopores and inherent micropores in the zeolites, which optimizes an environment for catalytic reaction and mass transfers. The channel with mainly 3–5 nm in diameters in the zeolites serves as the “aisle” to enhance the diffusion of molecules, especially the aromatics molecules, while the micropores have been identified to be the active cavities for the aromatics formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Wang, T. Li, M. Xie and G. Xu, Catal. Lett. 21 (1993) 35.

    Google Scholar 

  2. Y. Xu and L. Lin, Appl. Catal. A188 (1999) 53.

    Google Scholar 

  3. Y. Shu and M. Ichikawa, Catal. Today 71 (2001) 55.

    Google Scholar 

  4. Y. Xu, X. Bao and L. Lin, J. Catal. 216 (2003) 386.

    Google Scholar 

  5. D. M. Bibby, N. B. Milestone, J. E. Patterson and L. P. Aldridge, J. Catal. 97 (1986) 493.

    Google Scholar 

  6. M. Guisnet and P. Magnoux, Appl. Catal. 54 (1989) 1.

    Google Scholar 

  7. M. Guisnet and P. Magnoux, Stud. Surf. Sci. Catal. 88 (1994) 53.

    Google Scholar 

  8. A. de Lucas, P. Canizares and A. Duran, Appl. Catal. A206 (2001) 87.

    Google Scholar 

  9. D. Wang, G. D. Meitzner and E. Iglesia, J. Catal. 206 (2002) 14.

    Google Scholar 

  10. Y. Lu, D. Ma, X. Bao and L. Lin, J. Chem. Soc., Chem. Commum. (2002) 2048.

  11. D. Ma, Y. Lu, L. Su, Z. Xu, Z. Tian, Y. Xu, L. Lin and X. Bao, J. Phys. Chem. B106 (2002) 8524.

    Google Scholar 

  12. W. Richard, H. Young and E. Iglesia, J. Phys. Chem. B103 (1999) 5787.

    Google Scholar 

  13. B. Sharifah, H. Derouane-Abd, A. J. Ross and E. G. Derouane, Catal. Today 63 (2000) 461.

    Google Scholar 

  14. C. Bouchy, I. Schmidt, J. R. Anderson, C. J. H. Jacobsen, E. G. Derouane and S. B. Derouane-Abd Hamid, J. Mol. Catal. A: Chem. 163 (2000) 283.

    Google Scholar 

  15. C. Zhang, S. Li, Y. Yuan, W. Zhang, T. Wu and L. Lin, Catal. Lett. 56 (1998) 207.

    Google Scholar 

  16. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara and M. Matsukata, Chem. Lett. (2000) 882.

  17. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi and M. Matsukata, Appl. Catal. A219 (2001) 33.

    Google Scholar 

  18. T. Suzuki and T. Okuhar, Microporous Mesoporous Mater. 43 (2001) 83.

    Google Scholar 

  19. J. C. Groen, J. Perez-Ramirez and L. A. Peffer, Chem. Lett. (2002) 9.

  20. Y. Shu, D. Ma, X. Bao and Y. Xu, Catal. Lett. 66 (2000) 161.

    Google Scholar 

  21. W. Liu, Y. Xu, S. Wong, J. Qiu and N. Yang, J. Mol. Catal. A120 (1997) 257.

    Google Scholar 

  22. D. Ma, Y. Shu, W. Zhang, X. Han, Y. Xu and X. Bao, Angew. Chem., Int. Ed. 39 (2000) 2928-2931.

    Google Scholar 

  23. J. Shu, A. Adnot and B. P. Grandjean, Ind. Eng. Chem. Res. 38 (1999) 3860.

    Google Scholar 

  24. D. Wang, M. Rosynek and J. H. Lunsford, Top. Catal. 3 (1996) 289.

    Google Scholar 

  25. J. E. DeVries, H. C. Yao, R. J. Baird and H. S. Gandhi, J. Catal. 84 (1983) 8.

    Google Scholar 

  26. P. E. Dai and J. H. Lunsford, J. Catal. 64 (1980) 173.

    Google Scholar 

  27. T. Yang and J. H. Lunsford, J. Catal. 103 (1987) 55.

    Google Scholar 

  28. Y. Shu, D. Ma, L. Xu, Y. Xu and X. Bao, Catal. Lett. 70 (2000) 67.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yide Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L., Liu, L., Zhuang, J. et al. Creating Mesopores in ZSM-5 Zeolite by Alkali Treatment: A New Way to Enhance the Catalytic Performance of Methane Dehydroaromatization on Mo/HZSM-5 Catalysts. Catalysis Letters 91, 155–167 (2003). https://doi.org/10.1023/B:CATL.0000007149.48132.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:CATL.0000007149.48132.5a

Navigation