Skip to main content
Log in

Inhibition of Tumor-associated Fatty Acid Synthase Hyperactivity Induces Synergistic Chemosensitization of HER-2/neu-Overexpressing Human Breast Cancer Cells to Docetaxel (taxotere)

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The lipogenic enzyme fatty acid synthase (FAS) is differentially overexpressed and hyperactivated in a biologically aggressive subset of breast carcinomas and minimally in most normal adult tissues, rendering it an interesting target for antineoplastic therapy development. Recently, a molecular connection between the HER-2/neu (c-erbB-2) oncogene and FAS has been described in human breast cancer cells [1]. Here, we examined the relationship between breast cancer-associated FAS hyperactivity and HER-2/neu-induced breast cancer chemoresistance to taxanes. Co-administration of docetaxel (Taxotere®) and the mycotoxin cerulenin, a potent and non-competitive inhibitor of FAS activity, demonstrated strong synergism in HER-2/neu-overexpressing and docetaxel-resistant SK-Br3 cells, modest synergism in moderately HER-2/neu-expressing MCF-7 cells, and it showed additive effects in low HER-2/neu-expressing and docetaxel-sensitive MDA-MB-231 cells. Sequential exposure to cerulenin followed by docetaxel again yielded strong synergism in SK-Br3 cells, whereas antagonistic and moderate synergistic interactions were observed in MCF-7 and MDA-MB-231 cells, respectively. Importantly, inhibition of FAS activity dramatically decreased the expression of HER-2/neu oncogene in SK-Br3 breast cancer cells. To the best of our knowledge this is the first study demonstrating that FAS is playing an active role in HER-2/neu-induced breast cancer chemotherapy resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kumar-Sinha C, Ignatoski KW, Lippman ME, Ethier SP, Chinnaiyan AM: Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Res 63: 132–139, 2003

    Google Scholar 

  2. Kuhajda FP, Piantadosi S, Pasternack GR: Haptoglobinrelated protein (Hpr) epitopes in breast cancer as a predictor of recurrence of the disease. N Engl J Med 321: 636–641, 1989

    Google Scholar 

  3. Corrigan C, Martin AW, Lear SC, Kuhns S, Kuhajda FP, Pasternack GR: Prognostic value of the immunohistochemical demonstration of haptoglobin-related protein in breast cancer. Am J Clin Pathol 96: 406, 1991

    Google Scholar 

  4. Jensen V, Holm-Nielsen P, Melsen F: OA-519 expression in node negative breast cancer Breast Cancer Res Treat 27: 1–2, 1993

    Google Scholar 

  5. Kuhajda FP, Jenner K, Wood FD, Hennigar RA, Jacobs LB, Dick JD, Pasternack GR: Fatty acid synthesis: a potential selective target for antineoplastic therapy. Proc Natl Acad Sci USA 91: 6379–6383, 1994

    Google Scholar 

  6. Alo PL, Visca P, Marci A, Mangoni A, Botti C, Di Tondo U: Expression of fatty acid synthase (FAS) as a predictor of recurrence in stage I breast carcinoma patients. Cancer 77: 474–482, 1996

    Google Scholar 

  7. Alo PL, Visca P, Trombetta G, Mangoni A, Lenti L, Monaco S, Botti C, Serpieri DE, Di Tondo U: Fatty acid synthase (FAS) predictive strength in poorly differentiated early breast carcinomas. Tumori 85: 35–40, 1999

    Google Scholar 

  8. Kuhajda FP: Fatty-acid synthase and human cancer: new perspectives on its role in tumor biology Nutrition 16: 202–208, 2000

    Google Scholar 

  9. Weiss L, Hoffman GE, Schreiber R, Andres H, Fuchs E, Korber E, Kolb HJ: Fatty-acid biosynthesis in man, a pathway of minor importance. Purification, optimal assay conditions, and organ distribution of fatty acid synthase. Biol Chem Hoppe Seyler 267: 905–912, 1986

    Google Scholar 

  10. Ookhtens M, Kannan R, Lyon I, Baker N: Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am J Physiol 247: R146–R153, 1984

    Google Scholar 

  11. Pizer ES, Wood FD, Pasternack GR, Kuhajda FP: Fatty acid synthase (FAS): a target for cytotoxic antimetabolites in HL60 promyelocytic leukemia cells. Cancer Res 56: 745–751, 1996

    Google Scholar 

  12. Vance D, Goldberg I, Mitsuhashi O, Bloch K: Inhibition of fatty acid synthethases by the antibiotic cerulenin. Biochem Biophys Res Commun 48: 549–565, 1972

    Google Scholar 

  13. Omura S: The antibiotic cerulenin: a novel tool for biochemistry as an inhibitor of fatty acid synthesis. Bact Rev 40: 681–697, 1976

    Google Scholar 

  14. Christie WW, Hunter ML, Clegg RA: The effects of cerulenin on lipid metabolism in vitro in cellular preparation from the rat. Biochim Biophys Acta 666: 284–290, 1981

    Google Scholar 

  15. Funabashi H, Kawaguchi A, Tomoda H, Omura S, Okuda S, Iwasaki S: Binding site of cerulenin in fatty acid synthetase. J Biochem 105: 751–755, 1989

    Google Scholar 

  16. Moche M, Schneider G, Edwards P, Dehesh K, Lindqvist Y: Structure of the complex between the antibiotic cerulenin and its target, α-ketoacyl carrier protein synthase. J Biol Chem 274: 6031–6034, 1999

    Google Scholar 

  17. Pizer ES, Jackisch C, Wood FD, Pasternack GR, Davidson NE, Kuhajda FP: Inhibition of fatty acid synthase induces programmed cell death in human breast cancer cells. Cancer Res 56: 2745–2747, 1996

    Google Scholar 

  18. Pizer ES, Chrest FJ, DiGiuseppe JA, Han WF: Pharmacological inhibition of mammalian fatty acid synthase suppress DNA replication and induce apoptosis in tumor cell lines. Cancer Res 58: 4611–4615, 1998

    Google Scholar 

  19. Pizer ES, Thupari J, Han WF, Pinn ML, Chrest FJ, Frehywot GL, Townsend CA, Kuhajda FP: Malonyl-coenzyme-A is a potential mediator of cytotoxicity induced by fatty-acid synthase inhibition in human breast cancer cells and xenografts. Cancer Res 60: 213–218, 2000

    Google Scholar 

  20. Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han WF, Pizer ES: Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 61: 1493–1499, 2001

    Google Scholar 

  21. Pizer ES, Wood FD, Heine HS, Romantsev FE, Pasternack GR, Kuhajda FP: Inhibition of fatty acid synthase delays disease progression in a xenograft model of ovarian cancer. Cancer Res 56: 1189–1193, 1996

    Google Scholar 

  22. Kuhajda FP, Pizer ES, Li JN, Mani NS, Frehywot GL, Townsend CA: Synthesis and anti-tumor activity of a novel inhibitor of fatty acid synthase. Proc Natl Acad Sci USA 97: 3450–3454, 2000

    Google Scholar 

  23. Di Fiore PP, Pierce JH, Kraus MH, Segatto O, King CR, Aaronson SA: erbB-2 is a potent oncogene when overexpressed in NIH/3T3 cells. Science 237: 178–182, 1987

    Google Scholar 

  24. Pierce JH, Arnstein P, DiMarco E, Artrip J, Kraus MH, Lonardo F, Di Fiore PP, Aaronson SA: Oncogenic potential of erbB-2 in human mammary epithelial cells. Oncogene 6: 1189–1194, 1991

    Google Scholar 

  25. Yu D, Hamada J, Zhang H, Nicolson GL, Hung MC: Mechanisms of c-erbB2/neu oncogene-induced metastasis and repression of metastatic properties by adenovirus 5 E1A gene products. Oncogene 7: 2263–2270, 1992

    Google Scholar 

  26. Yu D, Wang SS, Dulski KM, Tsai CM, Nicolson GL, Hung MC: c-erbB-2/neu overexpression enhances metastatic potential of human lung cancer cells by induction of metastasis-associated properties. Cancer Res 54: 3260–3266, 1994

    Google Scholar 

  27. Yu D, Hung M-C: Role of erbB2 in breast cancer chemosensitivity. BioEssays 22: 673–680, 2000

    Google Scholar 

  28. Kim R, Tanabe K, Uchida Y, Osaki A, Toge T: The role of HER-2 oncoprotein in drug-sensitivity in breast cancer (review). Oncol Rep 9: 3–9, 2002

    Google Scholar 

  29. Yu D, Liu B, Tan M, Li J, Wang SS, Hung MC: Overexpression of c-erbB-2/neu in breast cancer cells confers increased resistance to Taxol via mdr-1-independent mechanisms. Oncogene 13: 1359–1365, 1996

    Google Scholar 

  30. Ueno NT, Yu D, Hung MC: Chemosensitization of HER-2/neu-overexpressing human breast cancer cells to paclitaxel (Taxol) by adenovirus type 5 E1A. Oncogene 15: 953–960, 1997

    Google Scholar 

  31. Yu D, Liu B, Jing T, Sun D, Price JE, Singletary SE, Ibrahim N, Hortobagyi GN, Hung MC: Overexpression of both p185c-erbB2 and p170mdr-1 renders breast cancer cells highly resistant to taxol. Oncogene 16: 2087–2094, 1998

    Google Scholar 

  32. Ciardiello F, Caputo R, Pomatico G, De Laurentiis M, De Placido S, Bianco AR, Tortora G: Resistance to taxanes is induced by c-erbB-2 overexpression in human MCF-10A mammary epithelial cells and is blocked by combined treatment with an antisense oligonucleotide targeting type I protein kinase A. Int J Cancer 85: 710–715, 2000

    Google Scholar 

  33. Colomer R, Montero S, Lluch A, Ojeda B, Barnadas A, Casado A, Massuti B, Cortes-Funes H, Lloveras B: Circulating HER2 extracellular domain and resistance to chemotherapy in advanced breast cancer. Clin Cancer Res 6: 2356–2362, 2000

    Google Scholar 

  34. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL: Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182, 1987

    Google Scholar 

  35. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712, 1989

    Google Scholar 

  36. Loftus TM, Jaworsky DE, Frehywot GL, Townsend CA, Ronnett GV, Lane MD, Kuhajda FP: Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science 288: 2379–2381, 2000

    Google Scholar 

  37. Thupari JN, Landree LE, Ronnett GV, Kuhajda FP: C75 increases peripheral energy utilization and fatty acid oxidation in diet-induced obesity. Proc Natl Acad Sci USA 99: 9498–9502, 2002

    Google Scholar 

  38. Wortman MD, Clegg DJ, D'Alessio D, Woods SC, Seeley RJ: C75 inhibits food intake by increasing CNS glucose metabolism. Nat Med 9: 483–485, 2003

    Google Scholar 

  39. Gao S, Lane MD: Effect of the anorectic fatty acid synthase inhibitor C75 on neuronal activity in the hypothalamus and brainstem. Proc Natl Acad Sci USA 100: 5628–5633, 2003

    Google Scholar 

  40. Moelling K, Schulze T, Knoop MT, Kay J, Jupp R, Nicolaou G, Pearl LH: In vitro inhibition of HIV-1 proteinase by cerulenin. FEBS Lett 261: 373–377, 1990

    Google Scholar 

  41. Perez L, Carrasco L: Cerulenin, an inhibitor of lipid synthesis, blocks vesicular stomatitis virus RNA replication. FEBS Lett 280: 129–133, 1991

    Google Scholar 

  42. Simon SM, Aderem A: Myristoylation of proteins in the yeast secretory pathway. J Biol Chem. 267: 3922–3931, 1992

    Google Scholar 

  43. Ringel I, Horwitz SB: Studies with RP 56976 (taxotere): a semisynthetic analogue of taxol. J Natl Cancer Inst 83: 288–291, 1991

    Google Scholar 

  44. Diaz JF, Andreu JM: Assembly of purified GDP-tubulin into microtubules induced by taxol and taxotere: reversibility, ligand stoichiometry, and competition. Biochemistry 32: 2747–2755, 1993

    Google Scholar 

  45. Verweij J, Clavel M, Chevalier B: Paclitaxel (Taxol) and docetaxel (Taxotere): not simply two of a kind. Ann Oncol 5: 495–505, 1994

    Google Scholar 

  46. Valero V, Jones SE, Von Hoff DD, Booser DJ, Mennel RG, Ravdin PM, Holmes FA, Rahman Z, Schottstaedt MW, Erban JK, Esparza-Guerra L, Earhart RH, Hortobagyi GN, Burris HA 3rd: A phase II study of docetaxel in patients with paclitaxel-resistant metastatic breast cancer. J Clin Oncol 16: 3362–3368, 1998

    Google Scholar 

  47. Burris HA 3rd: Docetaxel (Taxotere) in HER-2-positive patients and in combination with trastuzumab (Herceptin). Semin Oncol 27(2 Suppl 3): 19–23, 2000

    Google Scholar 

  48. Burris HA 3rd: Docetaxel (Taxotere) plus trastuzumab (Herceptin) in breast cancer. Semin Oncol 28(1 Suppl 3): 38–44, 2001

    Google Scholar 

  49. Esteva FJ: The current status of docetaxel for metastatic breast cancer. Oncology 16(6 Suppl 6): 17–26, 2002

    Google Scholar 

  50. Dils R, Carey EM: Fatty acid synthase from rabbit mammary gland. Methods Enzymol 35: 74–83, 1975

    Google Scholar 

  51. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM: Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89: 4285–4289, 1992

    Google Scholar 

  52. Sliwkowski MX, Lofgren JA, Lewis GD, Hotaling TE, Fendly BM, Fox JA: Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol 26(4 Suppl 12): 60–70, 1999

    Google Scholar 

  53. Klapper LN, Waterman H, Sela M, Yarden Y: Tumorinhibitory antibodies to HER-2/ErbB-2 may act by recruiting c-Cbl and enhancing ubiquitination of HER-2. Cancer Res 60: 3384–3388, 2000

    Google Scholar 

  54. Yarden Y: Biology of HER2 and its importance in breast cancer. Oncology 61(Suppl. 2): 1–13, 2001

    Google Scholar 

  55. Baselga J, Albanell J, Molina MA, Arribas J: Mechanism of action of trastuzumab and scientific update. Semin Oncol 28(5 Suppl 16): 4–11, 2001

    Google Scholar 

  56. Albanell J, Codony J, Rovira A, Mellado B, Gascon P: Mechanism of action of anti-HER2 monoclonal antibodies: scientific update on trastuzumab and 2C4. Adv Exp Med Biol 532: 253–268, 2003

    Google Scholar 

  57. Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, Coombs D, Baly D, Kabbinavar F, Slamon D: Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18: 2241–2251, 1999

    Google Scholar 

  58. Pegram MD, Lopez A, Konecny G, Slamon DJ: Trastuzumab and chemotherapeutics: drug interactions and synergies. Semin Oncol 27(6 Suppl 11): 21–25, 2000

    Google Scholar 

  59. Slamon D, Pegram M: Rationale for trastuzumab (Herceptin) in adjuvant breast cancer trials. Semin Oncol 28(1 Suppl 3): 13–19, 2001

    Google Scholar 

  60. Chou T-C, Talalay, P: Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul 22: 27–55, 1984

    Google Scholar 

  61. Berenbaum MC: What is synergy? Pharmacol Rev 41: 93–141, 1989

    Google Scholar 

  62. Nugent A, McDermott E, O'Higgins N, Fennelly JJ, Duffy MJ: Measurement of erbB-2 oncoprotein in human breast cancers by ELISA. Biochem Soc Trans 20: 82S, 1992

    Google Scholar 

  63. Ueno NT, Bartholomeusz C, Herrmann JL, Estrov Z, Shao R, Andreeff M, Price J, Paul RW, Anklesaria P, Yu D, Hung MC: E1A-mediated paclitaxel sensitization in HER-2/neuoverexpressing ovarian cancer SKOV3.ip1 through apoptosis involving the caspase-3 pathway. Clin Cancer Res 6: 250–259, 2000

    Google Scholar 

  64. Menendez JA, Ropero S, Vazquez-Martin A, Cortes-Funes H, Lupu R, Colomer R: Trastuzumab and cerulenin synergistically inhibit breast cancer cell growth: interaction of HER-2/neu and fatty acid synthase signaling pathways. Proc Am Assoc Cancer Res Abstract 2989, 2002

  65. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R: A molecular cross-communication between Heregulin/HER2 and fatty acid synthase in breast cancer cells. Proc Am Assoc Cancer Res Abstract 6207, 2003

  66. Xing X, Wang SC, Xia W, Zou Y, Shao R, Kwong KY, Yu Z, Zhang S, Miller S, Huang L, Hung MC: The Ets pro-Fatty acid synthase activity and HER-2/neu-induced chemoresistance in breast cancer 195 tein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis. Nature Med 6: 189–195, 2000

    Google Scholar 

  67. Swinnen JV, Van Veldhoven PP, Timmermans L, De Schrijver E, Brusselmans K, Vanderhoydonc F, Van de Sande T, Heemers H, HeynsW, Verhoeven G: Fatty acid synthase drives the synthesis of phospholipids partitioning into detergentresistant membrane microdomains. Biochem Biophys Res Commun 302: 898–903, 2003

    Google Scholar 

  68. Draber P, Draberova L: Lipid rafts in mast cell signaling. Mol Immunol 38: 1247–1252, 2002

    Google Scholar 

  69. Nagy P, Vereb G, Sebestyen Z, Horvath G, Lockett SJ, Damjanovich S, Park JW, Jovin TM, Szollosi J: Lipid rafts and the local density of ErbB proteins influence the biological role of homo-and heteroassociations of ErbB2. J Cell Sci 115: 4251–4262, 2002

    Google Scholar 

  70. Xie Y, Hung MC: Nuclear localization of p185neu tyrosine kinase and its association with transcriptional transactivation. Biochem Biophys Res Commun 203: 1589–1598, 1994

    Google Scholar 

  71. Menendez JA, Mehmi I, Atlas E, Colomer R, Lupu R: Novel signaling molecules implicated in tumor-associated fatty acid synthase-dependent breast cancer cell proliferation and survival: role of exogenous dietary fatty acids, p53-p21WAF1/CIP1, ERK1/2 MAPK, p27 Kip1, BRCA1 and NF-êB. Int JOncol (in press)

  72. Moscow JA, Cowan KH: Multidrug resistance. J Natl Cancer Inst 80: 14–20, 1988

    Google Scholar 

  73. Nooter K, Herweijer H: Multidrug resistance (mdr) genes in human cancer. Br J Cancer 63: 663–669, 1991

    Google Scholar 

  74. Vazquez-Martin A, Menendez JA, Ropero S, Montero S, Cortes-Funes H, Colomer R: Anthracycline resistance on breast cancer cells is reversed by inhibition of fatty acid synthase. Proc Am Assoc Cancer Res. Abstract 4709, 2002

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menendez, J.A., Lupu, R. & Colomer, R. Inhibition of Tumor-associated Fatty Acid Synthase Hyperactivity Induces Synergistic Chemosensitization of HER-2/neu-Overexpressing Human Breast Cancer Cells to Docetaxel (taxotere). Breast Cancer Res Treat 84, 183–195 (2004). https://doi.org/10.1023/B:BREA.0000018409.59448.60

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BREA.0000018409.59448.60

Navigation