Skip to main content
Log in

2-azaallylic rearrangement in homogeneous systems

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this work we present mechanism of the base-catalyzed 2-azaallylic rearrangement in homogeneous media. Detailed 2-azaallylic rearrangement studies have shown that tautomerism of derivatives of benzylidenebenzhydrylamines and N-fluorenylidenebenzylamines is not adequately encomposed by the Hammet equation and the equilibrium constant in the case of studied derivatives depends on the electronic as well as steric factors of the azaallylic system substituents. The presence of steric interactions which influence the equilibrium state has been additionally confirmed by means of crystallographic and molecular mechanics data as well as NOE studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ramakrishan, M.B. Sukhaswami, K.M. Patil and C. Eswaram, J. Biomol. Struct. Dyn. 15 (1998) 605.

    Google Scholar 

  2. T. Tanaka, T. Enoki, A.Y. Grosberg, S. Masamune, T. Oya, Y. Takaoka, K. Tanaka, Ch. Wang and G. Wang, Ber. Bunsenges. Phys. Chem. 102(11) (1998) 1529.

    CAS  Google Scholar 

  3. M.S. Madhusudhan and S. Vishveshwara, J. Biomol. Struct. Dyn. 16 (1998) 715.

    CAS  Google Scholar 

  4. R. Russel and D. Herschlag, RNA-A Publication of a RNA Society 5 (1999) 158.

    Google Scholar 

  5. E.E. Snell, in: Chemical and Biological Aspects of Pyridoxal Catalysis, eds. P.M. Fasella, A.E. Braunstein and A. Rossi-Fanelli (Macmillan, New York, 1963) pp. 1–12.

    Google Scholar 

  6. E.E. Snell, A.E. Braunstein, E.S. Severin, Yu.M. Torchinsky, eds., Pyridoxal Catalysis: Enzymes and Model Systems (Interscience, New York, 1968).

    Google Scholar 

  7. D.E. Metzier, M. Ikara and E.E. Severin and Yu.M. Torchinsky, eds., Pyridoxal Catalysis: Enzymes and Model Systems (Interscience, New York, 1968).

    Google Scholar 

  8. C.K. Ingold and C.W. Shoppee, J. Chem. Soc. (1929) 1199.

  9. Shoppee, J. Chem. Soc. (1931) 1225.

  10. D.J. Cram and R.D. Guthrie, J. Am. Chem. Soc. (1966) 5760.

  11. D.J. Cram and R.D. Guthrie, J. Am. Chem. Soc. 87 (1965) 397.

    Article  CAS  Google Scholar 

  12. A. Echevarria, J. Miller and M.G. Nascimento, Org. Magn. Reson. 23 (1985) 809.

    CAS  Google Scholar 

  13. W.B. Jennings, V.E. Boyd and P.B. Coulter, Org. Magn. Reson. 21 (1983) 279.

    Article  CAS  Google Scholar 

  14. P. Smidt and Van Dang, J. Org. Chem. 41 (1976) 2013.

    Article  Google Scholar 

  15. Weissberg, Organic Solvents. Physical Properties and Methods of Purification, 2nd Ed. (New York, 1955) p. 552.

  16. M.J. O'Donnell, J. Am. Chem. Soc. 110 (1988) 8520.

    Article  Google Scholar 

  17. J.K. Badenhoop and F. Wienhold, Int. J. Quantum Chem. 72 (1999) 269.

    Article  CAS  Google Scholar 

  18. M.J. O'Donnel, J. Am. Chem. Soc. 110 (1988) 8520.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogman, A., Gancarz, R., Domagalska, B.W. et al. 2-azaallylic rearrangement in homogeneous systems. Topics in Catalysis 11, 451–460 (2000). https://doi.org/10.1023/A:1027271124759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1027271124759

Navigation