Skip to main content
Log in

Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

A self-setting calcium phosphate cement (CPC) transforms into solid hydroxyapatite during setting at body temperature, and has been used in a number of medical and dental procedures. However, the inferior mechanical properties of CPC prohibits its use in unsupported defects, stress-bearing locations or reconstruction of thin bones. The aim of the present study was to strengthen CPC with fiber reinforcement, to examine the effect of fiber length and volume fraction, and to investigate the reinforcement mechanisms. Previous studies employed either short fibers for random distributions, or continuous fibers that were as long as the specimen size with preferred orientations such as unidirectional alignment. In the present study, a novel methodology was developed in which fibers several times longer than the specimen mold size were randomly mixed with the CPC paste to approximate the isotropy associated with short fibers, and at the same time achieve the high reinforcement efficacy associated with continuous fibers. Carbon fibers of 8 μm diameter were used with fiber lengths ranging from 3 mm to 200 mm, and fiber volume fraction from 1.9% to 9.5%. A three-point flexural test was used to fracture the specimens. Scanning electron microscopy was used to examine crack-fiber interactions and specimen fracture surfaces. The composite containing fibers of 75 mm in length at a volume fraction of 5.7% achieved a flexural strength about 4 times, and work-of-fracture 100 times, greater than the unreinforced CPC. It is concluded that randomly mixing the CPC paste with carbon fibers that were several times longer than the specimen mold size resulted in substantial improvements in strength and fracture resistance; the reinforcement mechanisms were crack bridging and fiber pullout; and fiber length and volume fraction were key microstructural parameters that determined the cement properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. F. OSBORN and H. NEWESELY, Biomaterials 1 (1980) 108.

    PubMed  Google Scholar 

  2. L. L. HENCH, J. Am. Ceram. Soc. 81 (1998) 1705.

    Google Scholar 

  3. W. SUCHANEK and M. YOSHIMURA, J. Mater. Res. 13 (1998) 94.

    Google Scholar 

  4. H. MONMA, M. GOTO and T. KONMURA, Gypsum and Lime 188 (1984) 11.

    Google Scholar 

  5. W. E. BROWN and L. C. CHOW, in Cements Research Progress, edited by P. W. Brown (American Ceramic Society, Westerville, OH, 1986) p. 352.

    Google Scholar 

  6. B. R. CONSTANZ, B. BARR and K. MCVICKER, US Patent 5,053,212 (October 1, (1991)).

  7. M. P. GINEBRA, E. FERNANDEZ, E. A. P. DE MAEYER, R. M. H. VERBEECK, M. G. BOLTONG, J. GINEBRA, F. C. M. DRIESSENS and J. A. PLANELL, J. Dent. Res. 76 (1997) 905.

    PubMed  Google Scholar 

  8. L. C. CHOW, S. TAKAGI, P. D. CONSTANTINO and C. D. FRIEDMAN CD, in Mater. Res. Soc. Symp. Proc., edited by B. E. Scheetz, A. G. Landers, and L. Odler (Materials Research Society, Pittsburgh, PA, 1991) p. 3.

    Google Scholar 

  9. Y. FUKASE, E. D. EANES, S. TAKAGI, L. C. CHOW and W. E. BROWN, J. Dent. Res. 69 (1990) 1852.

    PubMed  Google Scholar 

  10. K. ISHIKAWA, S. TAKAGI, L. C. CHOW and Y. ISHIKAWA, J. Mater. Sci.: Mater. Med. 6 (1995) 528.

    Google Scholar 

  11. Y. MIYAMOTO, K. ISHIKAWA, K. FUKAO, M. AWADA, M. NAGAYAMA, M. KON and K. ASAOKA, Biomaterials 16 (1995) 855.

    PubMed  Google Scholar 

  12. P. D. CONSTANTINO, C. D. FRIEDMAN, K. JONES and L. C. CHOW, Arch. Otolaryngol. Head Neck Surg. 117 (1991) 379.

    PubMed  Google Scholar 

  13. C. D. FRIEDMAN, P. D. CONSTANTINO, K. JONES and L. C. CHOW, ibid. 117 (1991) 385.

    PubMed  Google Scholar 

  14. P. D. CONSTANTINO and C. D. FRIEDMAN, Otolaryngol. Clin. North Am. 27 (1994) 1037.

    PubMed  Google Scholar 

  15. M. L. SHINDO, P. D. CONSTANTINO, C. D. FRIEDMAN and L. C. CHOW, Arch. Otolaryngol. Head Neck Surg. 119 (1993) 185.

    PubMed  Google Scholar 

  16. Y. MIYAMOTO, K. ISHIKAWA, M. TAKECHI, T. TOH, Y. YOSHIDA, M. NAGAYAMA, M. KON and K. ASAOKA, J. Biomed. Mater. Res. 37 (1997) 457.

    PubMed  Google Scholar 

  17. A. A. CHOHAYEB, L. C. CHOW and P. TSAKNIS, J. Endodont. 13 (1987) 384.

    Google Scholar 

  18. A. SUGAWARA, M. NISHIYAMA, K. KUSAMA, I. MORO, S. NISHIMURA, I. KUDO, L. C. CHOW and S. TAKAGI, Dent. Mater. J. 11 (1992) 11.

    PubMed  Google Scholar 

  19. S. H. DICKENS-VENZ, S. TAKAGI, L. C. CHOW, R. L. BOWEN, A. D. JOHNSTON and B. DICKENS, Dent. Mater. 10 (1994) 100.

    PubMed  Google Scholar 

  20. Y. MATSUYA, J. M. ANTONUCCI, S. MATSUYA, S. TAKAGI and L. C. CHOW, ibid. 12 (1996) 2.

    PubMed  Google Scholar 

  21. K. MIYAZAKI, T. HORIBE, J. M. ANTONUCCI, S. TAKAGI and L. C. CHOW, Dent. Mater. 9 (1993) 41.

    PubMed  Google Scholar 

  22. C. D. FRIEDMAN, P. D. CONSTANTINO, S. TAKAGI and L. C. CHOW, J. Biomed. Mater. Res. (Appl. Biomater.) 43 (1998) 428.

    Google Scholar 

  23. K. EKSTRAND, I. E. RUYTER and H. WELLENDORF, J. Biomed. Mater. Res. 21 (1987) 1065.

    PubMed  Google Scholar 

  24. W. R. KRAUSE, S. H. PARK and R. A. STRAUP, J. Biomed. Mater. Res. 23 (1989) 1195.

    PubMed  Google Scholar 

  25. A. J. GOLDBERG and C. J. BURSTONE, Dent. Mater. 8 (1992) 197.

    PubMed  Google Scholar 

  26. N. H. LADIZESKY, Y. Y. CHENG, T. W. CHOW and I. M. WARD, ibid. 9 (1993) 128.

    PubMed  Google Scholar 

  27. A. J. GOLDBERG, C. J. BURSTONE, I. HADJINIKOLAOU and J. JANCAR, J. Biomed. Mater. Res. 28 (1994) 167.

    PubMed  Google Scholar 

  28. B. R. LAWN, Fracture Of Brittle Solids (Cambridge University Press, London, 1993) Chapter 7.

    Google Scholar 

  29. H. H. K. XU, C. P. OSTERTAG, L. M. BRAUN and I. K. LLOYD, J. Am. Ceram. Soc. 77 (1994) 1889.

    Google Scholar 

  30. P. K. VALLITTU, V. P. LASSILA and R. LAPPALAINEN, Dent. Mater. 10 (1994) 116.

    PubMed  Google Scholar 

  31. S. SAHA and S. PAL, J. Biomech. 17 (1984) 467.

    PubMed  Google Scholar 

  32. B. POURDEYHIMI, H. H. ROBINSON, P. SCHWARTZ and H. D. WAGNER, Ann. Biomed. Eng. 14 (1986) 277.

    PubMed  Google Scholar 

  33. L. D. T. TOPOLESKI, P. DUCHEYNE and J. M. CUCKLER, J. Biomed. Mater. Res. 26 (1992) 1599.

    PubMed  Google Scholar 

  34. L. D. T. TOPOLESKI, P. DUCHEYNE and J. M. CUCKLER, ibid. 29 (1995) 299.

    PubMed  Google Scholar 

  35. J. KETTENEN, A. MAKELA, H. MIETTINEN, T. NEVALAINEN, M. HEIKKILA, P. TORMALA and P. ROKKANEN, J. Biomed. Mater. Res. 42 (1998) 407.

    PubMed  Google Scholar 

  36. A. S. VON GONTEN, J. R. KELLY and J. M. ANTONUCCI, J. Mater. Sci.: Mater. Med. 11 (2000) 95.

    Article  Google Scholar 

  37. American Society for Testing and Materials, ASTM F417-78. “standard Test Method For Flexural Strength Of Electrical Grade Ceramics” (ASTM, Philadelphia, PA, 1984).

    Google Scholar 

  38. G. WILLEMS, P. LAMBRECHTS, M. BRAEM, J. P. CELISP and G. VANHERLE, Dent. Mater. 8 (1992) 310.

    PubMed  Google Scholar 

  39. H. H. K. XU, T. A. MARTIN, J. M. ANTONUCCI and F. C. EICHMILLER, J. Dent. Res. 78 (1999) 706.

    PubMed  Google Scholar 

  40. H. H. K. XU, ibid. 78 (1999) 1304.

    PubMed  Google Scholar 

  41. H. H. K. XU, D. T. SMI TH, S. JAHANMIR, E. ROMBERG, J. R. KELLY, V. P. THOMPSON and E. D. REKOW, J. Dent. Res. 77 (1998) 472.

    PubMed  Google Scholar 

  42. H. H. K. XU, C. P. OSTERTAG, L. M. BRAUN and I. K. LLOYD, J. Am. Ceram. Soc. 77 (1994) 1897.

    Google Scholar 

  43. J. DELMONTE, Technology Of Carbon And Graphite Fiber Composites (Reinhold Co., New York, 1981).

    Google Scholar 

  44. J. C. BOKROS, Carbon 15 (1977) 355.

    Google Scholar 

  45. R. NEUGEBAUER, G. HELBING, O. WOLTER, W. MOHR and G. GISTINGER, Biomaterials 2 (1981) 182.

    PubMed  Google Scholar 

  46. K. TAYTON, G. PHILLIPS and Z. RALIS, J. Bone Joint Surg. 64 (1982) 110.

    Google Scholar 

  47. C. K. SCHREIBER, Br. Dent. J. 137 (1974) 21.

    PubMed  Google Scholar 

  48. S. PAL and S. SAHA, Biomaterials 3 (1982) 93.

    PubMed  Google Scholar 

  49. I. E. RUYTER, K. EKSTRAND and N. BJORK, Dent. Mater. 2 (1986) 6.

    PubMed  Google Scholar 

  50. G. MALQUARTI, R. G. BERRUET and D. BOIS, J. Prosthet. Dent. 63 (1990) 251.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H.H.K., Eichmiller, F.C. & Barndt, P.R. Effects of fiber length and volume fraction on the reinforcement of calcium phosphate cement. Journal of Materials Science: Materials in Medicine 12, 57–65 (2001). https://doi.org/10.1023/A:1026753020208

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026753020208

Keywords

Navigation