Skip to main content
Log in

Characterization of the pea rDNA replication fork barrier: putative cis-acting and trans-acting factors

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

It was previously shown that in pea (Pisum sativum), rDNA repeats contain a polar replication fork barrier that blocks progression of the replication machinery moving in the direction opposite to transcription. This barrier maps in the untranscribed spacer close to the 3′ end of the 25S gene. Very similar barriers are also found in the rDNA of yeast, Xenopus and mammalian cultured cells. This high conservation indicates that the rDNA barrier plays a relevant biological role. Progression of replication forks through the DNA sequence where the barrier maps in pea was investigated in plasmids replicating in Escherichia coli and Saccharomyces cerevisiae. No barrier was detected in these heterologous systems, indicating that the DNA sequence by itself was insufficient to block the replication machinery. Therefore, trans-acting factors were likely to be required. Taking advantage of the natural sequence heterogeneity in pea rDNA, we obtained evidence that a 27 bp imperfect tandem repeat is involved in the arrest of replication. Moreover, nuclear protein(s) specifically bound to this repeat suggesting that this DNA/protein complex is responsible for the polar arrest of replication forks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bastia, D. and Mohanty, B.K. 1996. Mechanisms for completing DNA replication. In: M.L. DePamphilis <nt>(Ed.)</nt>, DNA Replication in Eukaryotic Cells, Cold Spring Harbor Press, Cold Spring Harbor, NY, pp. 177–215.

    Google Scholar 

  • Bierne, H. and Michel, B. 1994. When replication forks stop. Mol. Microbiol. 13: 17–23.

    Google Scholar 

  • Brewer, B.J. and Fangman, W.L. 1987. The localization of replication origins on ARS plasmids in S. cerevisiae. Cell 51: 463–471.

    Google Scholar 

  • Brewer, B.J. and Fangman, W.L. 1988. A replication fork barrier at the 3' end of yeast ribosomal RNA genes. Cell 55: 637–643.

    Google Scholar 

  • Brewer, B.J., Lockshon, D. and Fangman, W.L. 1992. The arrest of replication forks in the rDNA of yeast occurs independently of transcription. Cell 71: 267–276.

    Google Scholar 

  • Chiatante, D., Brusa, P., Levi, M., Sgorbati, S. and Sparvoli, E. 1990. A simple protocol to purify fresh nuclei from milligrams amounts of meristematic pea root tissue for biochemical and flow cytometry applications. Physiol. Plant. 78: 501–506.

    Google Scholar 

  • Chiatante, D., Bryant, J.A. and Fitchett, P. 1991. DNA topoisomerase in nuclei purified from root meristems of Pisum sativum. J. Exp. Bot. 42: 813–820.

    Google Scholar 

  • Dayn, A., Samadashwily, G.M. and Mirkin, S.M. 1992. Intramolecular DNA triplexes: unusual sequence requirements and influence on DNA polymerization. Proc. Natl. Acad. Sci. USA 89: 11406–11410.

    Google Scholar 

  • Fangman, W.L. and Brewer, B.J. 1991. Activation of replication origins within yeast chromosomes. Annu. Rev. Cell. Biol. 7: 375–402.

    Google Scholar 

  • Gerber, J.-K., Göegel, E., Berger, C., Wallisch, M., Müller, F., Grummt, I. and Grummt, F. 1995. Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90: 559–567.

    Google Scholar 

  • Hanahan, D. 1986. Techniques for transformation of E. coli. In: D.M. Glober <nt>(Ed.)</nt>, DNA Cloning: A Practical Approach, Vol. I, IRL Press, Oxford, pp. 109–135.

    Google Scholar 

  • Hernández, P., Bjerknes, C.A., Lamm, S.S. and Van 't Hof, J. 1988a: Proximity of an ARS consensus sequence to a replication origin of pea (Pisum sativum). Plant Mol. Biol. 10: 413–422.

    Google Scholar 

  • Hernández, P., Lamm, S.S., Bjerknes, C.A. and Van 't Hof, J. 1988b. Replication termini in the rDNA of synchronized pea root cells (Pisum sativum). EMBO J. 7: 303–308.

    Google Scholar 

  • Hernández, P., Martín-Parras, L., Martínez-Robles, M.L. and Schvartzman, J.B. 1993. Conserved features in the mode of replication of eukaryotic ribosomal RNA genes. EMBO J. 12: 1475–1485.

    Google Scholar 

  • Huberman, J.A., Spotila, L.D., Nawotka, K.A., El-Assouli, S.M. and Davis, L.R. 1987. The in vivo replication origin of the yeast 2 _m plasmid. Cell 51: 473–481.

    Google Scholar 

  • Ingle, I., Timmis, I.N. and Sinclair, J. 1975. The relationship between satellite desoxyribonucleic acid, ribosomal ribonucleic acid, gene redundancy and genome size in plants. Plant Physiol. 55: 496–501.

    Google Scholar 

  • Jorgensen, R.A., Cuellar, R.E., Thompson, W.F. and Kavanagh, T.A. 1987. Structure and variation in ribosomal RNA genes of pea. Plant Mol. Biol. 8: 3–12.

    Google Scholar 

  • Linskens, M.H.K. and Huberman, J.A. 1988. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol. Cell. Biol. 8: 4927–4935.

    Google Scholar 

  • Little, R.D., Platt, T.H.K. and Schildkraut, C.L. 1993. Initiation and termination of DNA replication in human rRNA genes. Mol. Cell. Biol. 13: 6600–6613.

    Google Scholar 

  • López-Estraño, C., Schvartzman, J.B., Krimer, D.B. and Hernández, P. 1998. Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA. J. Mol. Biol. 277: 249–256.

    Google Scholar 

  • Piller, K.J., Baerson, S.R., Polans, N.O. and Kaufman, L.S. 1990. Structural analysis of the short length ribosomal DNA variant from Pisum sativum L. cv. Alaska. Nucl. Acids Res. 18: 3135–3145.

    Google Scholar 

  • Polan, N.O., Weeden, N.F. and Thompson, W.F. 1986. Distribution, inheritance and linkage relationships of ribosomal DNA spacer length variants in pea. Theor. Appl. Genet. 72: 289–295.

    Google Scholar 

  • Rao, B.S. 1994. Pausing of simian virus-40 DNA replication fork movement in vivo by (dG-dA)(n)_(dT-dC)(n) tracts. Gene 140: 233–237.

    Google Scholar 

  • Samadashwily, G.M., Raca, G. and Mirkin, S.M. 1997. Trinucleotide repeats affect DNA replication in vivo. Nature Genet. 17: 298–304.

    Google Scholar 

  • Sanger, F., Nicklen, S. and Coulson, A.R. 1997. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463–5467.

    Google Scholar 

  • Schiestl, R.H. and Cietz, G,R. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339–346 (1989).

    Google Scholar 

  • Sherman, F., Fink, G.R. and Hicks, J.B. 1986. Methods in yeast genetics. Cold Spring Harbor Press, Cold Spring Harbor, NY.

    Google Scholar 

  • Viguera, E., Hernández, P., Krimer, D.B., Boistov, A.S., Lurz, R., Alonso, J.C. and Schvartzman, J.B. 1996. The ColE1 unidirectional origin acts as a polar replication fork pausing site. J. Biol. Chem. 271: 22414–22421.

    Google Scholar 

  • Weaver, D. and DePamphilis, M. 1984. The role of palindromic and non-palindromic sequences in arresting DNA synthesis in vitro and in vivo. J. Mol. Biol. 180: 961–986 (1984).

    Google Scholar 

  • Wiesendanger, B., Lucchini, R., Koller, T. and Sogo, J.M. 1994. Replication fork barriers in the Xenopus rDNA. Nucl. Acids Res. 22: 5038–5046 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

López-estraño, C., Schvartzman, J.B., Krimer, D.B. et al. Characterization of the pea rDNA replication fork barrier: putative cis-acting and trans-acting factors. Plant Mol Biol 40, 99–110 (1999). https://doi.org/10.1023/A:1026405311132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026405311132

Navigation