Skip to main content

Advertisement

Log in

Maternal Folate Status and Lactation

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Folate plays an essential role in DNA, RNA, and protein biosynthesis. For this reason, the physiological need for this vitamin is increased during periods of rapid anabolic activity such as pregnancy and lactation. Although the importance of folate and the consequences of suboptimal folate status during pregnancy, especially during the periconceptional period, are well appreciated, little is known about the value of folate during lactation. The limited number of studies available on folate intake during lactation suggest that many women do not consume an adequate amount of folate and that recommended target intakes may be too low. Although inadequate maternal folate intake does not affect milk folate concentration unless maternal deficiency is severe, potential consequences of suboptimal folate nutrition to both the mother and her future offspring should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. O'Connor (1994). Folate status during pregnancy and lactation. In L. Allen, J. King, and B. Lonnderdal (eds.), Nutrient Regulation during Pregnancy, Lactation, and Infant Growth, Plenum Press, New York, pp. 157–172.

    Google Scholar 

  2. M. F. Picciano (1995). Folate nutrition during lactation. In L. B. Bailey (ed.), Folate in Health and Disease, Marcel Dekker, Inc., New York, pp. 153–169.

    Google Scholar 

  3. D. L. O'Connor, T. Tamura, and M. F. Picciano (1991). Pteroyl-polyglutamates in human milk. Am. J. Clin. Nutr. 53:930–934.

    Google Scholar 

  4. H. S. Lim, A. D. Mackey, T. Tamura, and M. F. Picciano (1997). Measurable folates in human milk are increased by treatment with α-amylase and protease. FASEB J. 11:A395.

    Google Scholar 

  5. J. M. Cooperman, H. S. Dweck, L. J. Newman, C. Grabarino, and R. Lopez (1982). The folate in human milk. Am. J. Clin. Nutr. 36:576–580.

    Google Scholar 

  6. R. R. Eitenmiller, W. D. Bryan, I. K. Khalsa, R. M. Feeley, and H. M. Barnhart (1984). Folate content of human milk during early lactational stages. Nutr. Res. 4:391–397.

    Google Scholar 

  7. C. M. Brown, A. M. Smith, and M. F. Picciano (1986). Forms of human milk folacin and variation in patterns. J. Pediatr. Gastroenterol. Nutr. 5:278–282.

    Google Scholar 

  8. S. A. Udipi, A. Kirksey, and J. L. B. Roepke (1987). Diurnal variations in folacin levels of human milk: use of a single sample to represent folacin concentrations in milk during a 24-h period. Am. J. Clin. Nutr. 45:770–779.

    Google Scholar 

  9. T. Tamura, Y. Yoshimura, and T. Arakawa (1980). Human milk folate and folate status in lactating mother's and their infants. Am. J. Clin. Nutr. 33:193–197.

    Google Scholar 

  10. J. Selhub (1994). Folate binding proteins: mechanisms for placental and intestinal uptake. In L. Allen, J. King, and B. Lonnderdal (eds.), Nutrient Regulation during Pregnancy, Lactation, and Infant Growth, Plenum Press, New York, pp. 141–149.

    Google Scholar 

  11. M. A. Kane and S. Waxman (1989). Role of folate binding proteins in folate metabolism. Lab. Invest. 60:737–746.

    Google Scholar 

  12. A. C. Antony, C. S. Utley, P. D. Marcell, and J. F. Kolhouse (1982). Isolation, characterization and composition of the solubilized particulate and soluble folate binding proteins from human milk. J. Biol. Chem. 257:10081–10089.

    Google Scholar 

  13. J. Selhub, R. Arnold, A. M. Smith, and M. F. Picciano (1984). Milk folate binding protein (FBP): a secretory protein for folate? Nutr. Res. 4:181–187.

    Google Scholar 

  14. J. E. Ford (1974). Some observations on the possible nutritional significance of vitamin B-12 and folate-binding proteins in milk. Brit. J. Nutr. 31:243–257.

    Google Scholar 

  15. D. L. O'Connor (1991). Interaction of iron and folate during reproduction. Prog. Food. Nutr. Sci. 15:105–116.

    Google Scholar 

  16. D. L. O'Connor, M. F. Picciano, T. Tamura, and B. Shane (1990). Impaired milk folate secretion is not corrected by supplemental folate during iron deficiency in rats. J. Nutr. 120:499–506.

    Google Scholar 

  17. D. L. O'Connor, M. F. Picciano, A. R. Sherman, and S. L. Burgert (1987). Depressed folate incorporation into milk secondary to iron deficiency in the rat. J. Nutr. 117:1715–1720.

    Google Scholar 

  18. N. F. Butte, D. H. Calloway, and J. L. Van Duzen (1981). Nutritional assessment of pregnant and lactating Navajo women. Am. J. Clin. Nutr. 34:2216–2228.

    Google Scholar 

  19. J. Metz (1970). Folate deficiency conditioned by lactation. Am. J. Clin. Nutr. 23:843–847.

    Google Scholar 

  20. A. M. Smith, M. F. Picciano, and R. H. Deering (1983). Folate supplementation during lactation: Maternal folate status, human milk content, and their relationship to infant folate status. J. Pediatr. Gastroenterol. Nutr. 2:622–628.

    Google Scholar 

  21. M. R. Thomas, S. M. Sneed, C. Wei, P. A. Nail, M. Wilson, and E. E. Sprinkle (1980). The effect of vitamin C, vitamin B6, vitamin B12, folic acid, riboflavin, and thiamin on the breast milk and maternal status of well-nourished women at 6 months postpartum. Am. J. Clin. Nutr. 30:2151–2156.

    Google Scholar 

  22. M. M. Nelson and H. M. Evans (1947). The beneficial effects of synthetic pteroylglutamic acid. Arch. Biochem. 13:265–275.

    Google Scholar 

  23. M. M. Nelson and H. M. Evans (1948). The effect of succinylsulfathiazole on pteroylglutamic deficiency during lactation in the rat. Arch. Biochem. 18:153–159.

    Google Scholar 

  24. L. Iyengar and K. Rajalakshmi (1975). Effect of folic acid supplement on birth weights of infants. Am. J. Obstet. Gynecol. 122(3):332–336.

    Google Scholar 

  25. M. R. C. Vitamin Study Research Group (1991). Prevention of neural tube defects: results of the Medical Research Council Vitamin Study. Lancet 338:131–137.

    Google Scholar 

  26. N. Baumslag, T. Edelstein, and J. Metz (1970). Reduction of incidence of prematurity by folic acid supplementation in pregnancy. Br. Med. J. 1:16.

    Google Scholar 

  27. T. O. Scholl, M. L. Hediger, J. I. Schall, C.-S. Khoo, and R. L. Fischer (1996). Dietary and serum folate: their influence on the outcome of pregnancy. Am. J. Clin. Nutr. 63:520–525.

    Google Scholar 

  28. D. O'Connor (1993). Folic acid and neural tube defects prevention. N.I.N. Rev.8.

  29. A. E. Czeizel (1993). Prevention of congenital abnormalities by periconceptional multivitamin supplementation. Br. Med. J. 306:1645–1648.

    Google Scholar 

  30. R. P. M. Steegers-Theunissen, G. H. J. Boers, F. J. M. Tijbels, J. D. Finkelstein, H. J. Blom, C. M. J. Thomas, G. F. Borm, M. G. A. J. Wouters, and T. K. A. B. Eskes (1994). Maternal; hyperhomocysteinemia: a risk factor for neural-tube defects? Metabolism 43:1475–1480.

    Google Scholar 

  31. J. L. Mills, J. M. McPartlin, P. N. Kirke, Y. J. Lee, M. R. Conley, D. G. Weir, and J. M. Scott (1995). Homocysteine metabolism in pregnancies complicated by neural tube defects. Lancet. 345:149–151.

    Google Scholar 

  32. J. L. Mills, J. M. Scott, P. N. Kirke, J. M. McPartlin, M. R. Conley, D. G. Weir, A. M. Molloy, and Y. J. Lee (1996). Homocysteine and neural tube defects. J. Nutr. 126:756S–760S.

    Google Scholar 

  33. C. N. D. Coelho, J. A. Weber, N. W. Klein, W. G. Daniels, and T. A. Hoagland (1989). Whole rat embryos require methionine for neural tube closure when cultured on cow serum. J. Nutr. 119:1716–1725.

    Google Scholar 

  34. F. B. Essein and S. L. Wannberg (1993). Methionine but not folinic acid or vitamin B12alters the frequency of neural tube defects in Axd mutant mice. J. Nutr. 123:27–34.

    Google Scholar 

  35. N. Whitehead, F. Reyner, and J. Lindenhaum (1973). Megaloblastic changes in the cervical epithelium. J.A.M.A. 226:1421–1424.

    Google Scholar 

  36. C. E. Butterworth, K. D. Hatch, H. Gore, H. Mueller, and C. L. Krumdieck (1982). Improvement in cervical dysplasia associated with folic acid therapy in users of oral contraceptives. Am. J. Clin. Nutr. 35:73–82.

    Google Scholar 

  37. C. E. Butterworth, K. D. Hatch, S.-J. Soong, P. Cole, T. Tamura, H. E. Sauberlich, M. Borst, M. Macaluso, and V. Baker (1992). Oral folic acid supplementation for cervical dysplasia: A clinical intervention trial. Am. J. Obstet. Gynecol. 166:803–809.

    Google Scholar 

  38. M. P. Longnecker (1994). Alcoholic beverage consumption in relation to risk of breast cancer: meta-analysis and review. Cancer Causes and Control 5:73–82.

    Google Scholar 

  39. D. A. Roe (1990). Drug-folate interrelationships: historical aspects and current concerns. In M. F. Picciano, E. L. R. Stokstad, and J. F. Gregory (eds.), Folic Acid Metabolism In Health And Disease, Wiley-Liss, New York, pp. 277–287.

    Google Scholar 

  40. M. Cravo, J. Mason, Y. Dayal, D. Smith, J. Selhub, and I. Rosenberg (1992). Folate deficiency enhances the development of colonic neoplasia in dimethylhydrazine-treated rats. Cancer. Res. 52:5002–5006.

    Google Scholar 

  41. A. E. Rogers, R. Akhtar, and S. H. Zeisel (1990). Procarbazine carcinogenicity in methotextrate-treated or lipotrope-deficient male rats. Carcinogenesis. 11:1491–1495.

    Google Scholar 

  42. N. C. Popescu, S. C. Amsbaugh, and J. A. DiPaolo (1987). Human papillomavirus type 18 DNA is integrated at a single chromosome site in cervical carcinoma cells line SW756. J. Virol. 61:1682–1685.

    Google Scholar 

  43. M. Balaghi and C. Wagner (1993). DNA methylation in folate deficiency: use of CpG methylase. Biochem. Biophys. Res. Commun. 193:1184–1190.

    Google Scholar 

  44. K. S. McCully (1991). Micronutrients, Homocysteine Metabolism, and Atherosclerosis. In A. Bendich and C. E. Butterworth, Jr. (eds.), Micronutrients in Health and in Disease Prevention, Marcel Dekker, Inc., New York, pp. 69–93.

    Google Scholar 

  45. C. J. Boushey, S. A. A. Beresford, G. S. Omenn, and A. G. Motulsky (1995). A quantitative assessment of plasma homocysteine as a risk factor for vascular disease. Probable benefits of increasing folic acid intakes. J.A.M.A. 274:1049–1057.

    Google Scholar 

  46. L. E. Brattstrom, B. L. Hultberg, and J. E. Hardebo (1985). Folic acid responsive postmenopausal homocysteinemia. Metabolism 34:1073–1077.

    Google Scholar 

  47. S. E. Keizer, R. S. Gibson, and D. L. O'Connor (1995). Postpartum folic acid supplementation of adolescents: impact on maternal folate and zinc status and milk composition. Am. J. Clin. Nutr. 62:377–384.

    Google Scholar 

  48. I. Qvist, M. Abdulla, M. Jagerstad, and S. Svensson (1986). Iron, zinc and folate status during pregnancy and two months after delivery. Acta Obstet. Gynecol. Scand. 65:15–22.

    Google Scholar 

  49. L. Salmenpera, J. Perheentupa, and M. A. Siimes (1986). Folate nutrition is optimal in exclusively breast-fed infants but inadequate in some of their mothers and in some formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 5:283–289.

    Google Scholar 

  50. H. E. Sauberlich, J. H. Skala, and R. P. Dowdy (1974). Laboratory Tests For the Assessment of Folate Status. CRC Press Inc., Cleveland.

    Google Scholar 

  51. V. Herbert (1990). Development of human folate deficiency. In M. F. Picciano, E. L. R. Stokstad, and J. F. Gregory (eds.), Folic Acid Metabolism in Health and Disease, Wiley-Liss, New York, pp. 195–210.

    Google Scholar 

  52. J. Shapiro, H. W. Alberts, P. Welch, and J. Metz (1965). Folate and vitamin B12deficiency associated with lactation. Brit. J. Haemat. II:498–504.

    Google Scholar 

  53. L. E. Brattstroom, B. Israelsson, J. O. Jeppson, and B. L. Hultberg (1988). Folic acid—an innocuous means to reduce plasma homocysteine. Scand. J. Clin. Lab. Invest. 48:215–221.

    Google Scholar 

  54. A. D. Mackey, H. S. Lim, M. F. Picciano, and H. Smiciklas-Wright (1997). Biochemical indices of folate adequacy diminish in women during lactation. FASEB J. 11:A169.

    Google Scholar 

  55. H. E. Sauberlich (1990). Evaluation of folate nutrition in population groups. In M. F. Picciano, E. L. R. Stokstad and J. F Gregory (eds.), Folic Acid Metabolism in Health and Disease, Wiley-Liss, Inc., New York, pp. 211–235.

    Google Scholar 

  56. T. Green, L. Houghton, U. Donovan, R. S. Gibson, and D. L. O'Connor (1996). Effect of smoking, alcohol, and oral contraceptives on the folate status of a group of adolescent females. FASEB J. 10:A464.

    Google Scholar 

  57. M. C. Neville and C. T. Walsh (1996). Effects of drugs on milk secretion and composition. In P.N. Bennett, (ed), Drugs and Human Lactation, Second Edition, Elsevier, Amsterdam, pp. 15–46.

    Google Scholar 

  58. Y. Nakazawa, K. Chiba, N. Imatoh, T. Kotoroii, T. Sakamoto, and T. Ishizaki (1983). Serum folic acid levels and antipyrine clearance rates in smokers and non-smokers. Drug Alcohol Depend. 11:201–207.

    Google Scholar 

  59. F. R. Senti and S. M. Pilch (1985). Analysis of folate data from the Second National Health and Nutrition Examination Survey (NHANES II). J. Nutr. 115:1398–1402.

    Google Scholar 

  60. F. R. Witter, D. A. Blake, R. Baumgardner, E. D. Mellits, and J. R. Niebyl (1982). Folate, carotene, and smoking. Am. J. Obstet. Gynecol. 144:857.

    Google Scholar 

  61. R. M. Ortega, A. M. Lopez-Sobaler, M. M. Gonzalez-Gross, R. M. Redondo, I. Marzana, M. J. Zamora, and P. Andres (1994). Influence of smoking on folate intake and blood folate concentrations in a group of elderly Spanish men. J. Am. Coll. Nutr. 13:68–72.

    Google Scholar 

  62. C. J. Piyathilake, M. Macaluso, R. J. Hine, E. W. Richards, and C. L. Krumdieck (1994). Local and systemic effects of cigarette smoking on folate and vitamin-B12. Am. J. Clin. Nutr. 60:559–566.

    Google Scholar 

  63. M. L. Cravo, L. M. Gloria, J. Selhub, M. R. Nadeau, M. E. Camilo, M. P. Resende, J. N. Cardoso, C. N. Leitao, and F. C. Mira (1996). Hyperhomocysteinemia in chronic alcoholism: correlation with folate, vitamin B12, and vitamin B6status. Am. J. Clin. Nutr. 63:220–224.

    Google Scholar 

  64. A. J. Barak, H. C. Beckenhauer, D. J. Tuma, and S. Badakhsh (1987). Effects of prolonged ethanol feeding on methionine metabolism in rat liver. Biochem. Cell Biol. 65:230–233.

    Google Scholar 

  65. G. S. Bindra and R. S. Gibson (1987). Vitamin B12and folate status of East Indian Immigrants living in Canada. Nutr. Res. 7:365–374.

    Google Scholar 

  66. O. B. Martinez (1980). Red cell folate values of a group of nonpregnant mothers. Can. J. Public Health. 71:163–169.

    Google Scholar 

  67. Institute of Medicine (1991). Nutrition During Pregnancy. Washington, D.C., National Academy Press.

    Google Scholar 

  68. S. M. Sneed, C. Zane, and M. R. Thomas (1981). The effects of ascorbic acid, vitamin B6, vitamin B12, and folic acid supplementation on the breast milk and maternal nutritional status of low socioeconomic lactating women. Am. J. Clin. Nutr. 34:1338–1346.

    Google Scholar 

  69. J. M. Todd and W. R. Parnell (1994). Nutrient intakes of women who are breastfeeding. Eur. J. Clin. Nutr. 48:567–574.

    Google Scholar 

  70. L. G. Borrund, S. M. Krebs-Smith, L. Friedman, and P. M. Guenther (1993). Food and nutrient intakes of pregnant and lactating women in the United States. J. Nutr. Ed. 25:176–185.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah L. O'Connor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor, D.L., Green, T. & Picciano, M.F. Maternal Folate Status and Lactation. J Mammary Gland Biol Neoplasia 2, 279–289 (1997). https://doi.org/10.1023/A:1026388522182

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026388522182