Skip to main content
Log in

III: OCEAN CIRCULATION: Global Ocean Data Assimilation and Geoid Measurements

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Parts of geodesy and physical oceanography are about to mature into a single modeling problem involving the simultaneous estimation of the marine geoid and the general circulation. Both fields will benefit. To this end, we present an ocean state estimation (data assimilation) framework which is designed to obtain a dynamically consistent picture of the changing ocean circulation by combining global ocean data sets of arbitrary type with a general circulation model (GCM). The impact of geoid measurements on such estimates of the ocean circulation are numerous. For the mean circulation, a precise geoid describes the reference frame for dynamical signals in altimetric sea surface height observations. For the time-varying ocean signal, changing geoid information might be a valuable new information about correcting the changing flow field on time scales from a few month to a year, but the quantitative utility of such information has not yet been demonstrated. For a consistent estimate, some knowledge of the prior error covariances of all data fields is required. The final result must be consistent with prior error estimates for the data. State estimation is thus one of the few quantitative consistency checks for new geoid measurements anticipated from forthcoming space missions. Practical quantitative methods will yield a best possible estimate of the dynamical sea surface which, when combined with satellite altimetric surfaces, will produce a best-estimate marine geoid. The anticipated accuracy and precision of such estimates raises some novel modeling error issues which have not conventionally been of concern (the Boussinesq approximation, self-attraction and loading). Model skill at very high frequencies is a major concern because of the need to de-alias the data obtained by the inevitable oceanic temporal undersampling dictated by realistic satellite orbit configurations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balazs, E. I. and Douglas, B. C.: 1979, ‘Geodetic leveling and the sealevel slope along the California coast’, J. Geophys. Res. 84, 6195-6206.

    Article  ADS  Google Scholar 

  • Condi, F. and Wunsch, C.: 2002, ‘Measuring gravity field variability, the geoid, ocean bottom pressure fluctuations, and their dynamical implications’, J. Geoph. Res., submitted for publication.

  • Dewar, W. K., Hsueh, Y., McDougall, T. J., and Yuan, D.: 1998, ‘Calculation of pressure in ocean simulations’, J. Phys. Oceanogr. 28, 577-588.

    Article  ADS  Google Scholar 

  • Drinkwater, M. R., Floberghagen, R., Haagmans, R., Muzi, D., and Popescu, A.: 2002, ‘GOCE: ESA's First Earth Explorer Core Mission’, Space Sci. Rev., this volume.

  • Fukumori, I.: 2001, ‘Data assimilation by models’, in Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave (eds.), Academic, San Diego, 237-266.

    Google Scholar 

  • Fukumori, I., Raghunath, R., Fu, L.-L., and Chao, Y.: 1999, ‘Assimilation of TOPEX/POSEIDON altimeter data into a global ocean circulation model: How good are the results?’, J. Geophys. Res. 104, 25,647-25,665.

    Article  ADS  Google Scholar 

  • Lemoine, F., et al.: 1997, ‘The development of the NASA GSFC and NIMA Joint Geopotential Model’, in Segawa et al. (eds.), Proceedings of the International Symposium on Gravity, Geoid and Marine Geodesy, International Association of Geodesy Symposia, Vol. 117, 461-469, Springer-Verlag, Berlin.

    Google Scholar 

  • Levitus, S., Burgett, R., and Boyer, T.: 1994, World Ocean Atlas 1994, vol. 3, Salinity, and vol. 4, Temperature, NOAA Atlas NESDIS 3 & 4, U.S. Dep. of Comm., Washington, D.C.

    Google Scholar 

  • Losch, M. and Wunsch, C.: 2003, ‘Bottom topography as a control variable in an ocean model’, J. Atmos. and Ocean Techn., in press.

  • Marsh, J.G, and Chang, E.S.: 1978, ‘5' detailed gravimetric geoid in the northwestern Atlantic Ocean’, J. Mar. Geodesy 1, 253-261.

    Article  Google Scholar 

  • McDougall, T. J., Greatbatch, R. J., and Lu Y.: 2002, ‘On conservation equations in oceanography: how accurate are Boussinesq models?’, J. Phys. Oceanogr. 32, 1574-1584.

    Article  MathSciNet  ADS  Google Scholar 

  • Marotzke, J., Giering, R., Zhang, Q. K., Stammer, D., Hill, C. N., and Lee, T.: 1999, ‘Construction of the adjoint MIT ocean general circulation model and application to Atlantic heat transport sensitivity’, J. Geophys. Research 104, 29,529-29,548.

    ADS  Google Scholar 

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C.: 1997, ‘A finite-volume, incompressible navier-stokes model for studies of the ocean on parallel computers’, J. Geophys. Res. 102, 5753-5766.

    Article  ADS  Google Scholar 

  • Menemenlis, D. and Chechelnitsky, M.: 1998, ‘Error estimates for an ocean general circulation model from altimeter and acoustic tomography data’, Monthly Wea. Rev. 128, 763-778.

    Article  ADS  Google Scholar 

  • Oreskes, N., Shrader-Frechette, K., and Belitz, K.: 1994, ‘Verification, validation, and confirmation of numerical models in the earth sciences’, Science 263, 641-646.

    ADS  Google Scholar 

  • Ponte, R. M., Stammer, D., and Wunsch, C.: 2001, ‘Improved ocean angular momentum estimates using an ocean model constrained by large-scale data’, Geophys. Res. Letters 28, 1775-1778.

    Article  ADS  Google Scholar 

  • Spencer, R., Foden, P. R., McGarry, C., Harrison, A. J., Vassie, J. M., Baker, T. F., Smithson, M. J., Harangozo, S. A., and Woodworth, P. L.: 1993, ‘The ACCLAIM program in the South Atlantic and Southern Oceans’, Intl. Hydrog. Rev. 70, 7-21.

    Google Scholar 

  • Stammer, D., Wunsch, C., and Ponte, R.: 2000, ‘De-Aliasing of global high frequency barotropic motions in altimeter observations’, Geophysical Res. Letters 27, 1175-1178.

    Article  ADS  Google Scholar 

  • Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., and Marshall, J.: 2002a, ‘The global ocean circulation during 1992–1997, estimated from ocean observations and a general circulation model’, J. Geophys. Res., 107(C9), 3118, DOI: 10.1029/2001JC000888.

    Article  ADS  Google Scholar 

  • Stammer, D., Wunsch, C., Fukumori I., and Marshall, J.: 2002b, ‘State estimation in modern oceanographic research’, EOS, Transactions, American Geophysical Union, 83(27), 289&294-295.

    Google Scholar 

  • Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft, A., Hill, C.N., and Marshall, J.: 2002c, ‘Volume, heat and freshwater transports of the global ocean circulation 1992–2000, estimated from a general circulation model constrained by WOCE data’, J. Geophys. Res., 108(C1), 3007, DOI: 10.1029/2001JC001115.

    Article  Google Scholar 

  • Stammer, D., Ueyoshi, K., Large, W.B., Josey S., and Wunsch, C.: 2002d, ‘Improving air-sea flux estimates through global ocean data assimilation’, ECCO Report Series, Report 13, pp: 31 (see also http://www.ecco-group.org/reports.html).

  • Sturges, W.: 1974, ‘Sea level slope along continental boundaries’, J. Geophys. Res. 79, 825-830.

    ADS  Google Scholar 

  • de Szoeke, R. A. and Samelson, R. M.: 2002, ‘The duality between the Boussinesq and non-Boussinesq hydrostatic equations of motion’, J. Phys. Oc. 32, 2194-2203.

    Article  MathSciNet  Google Scholar 

  • Tapley, B. D. and Kim, M.-C.: 2001, ‘Applications to geodesy’, in Satellite Altimetry and Earth Sciences, L.-L. Fu and A. Cazenave (eds.), Academic, San Diego, 371-406.

    Google Scholar 

  • Wahr. J., Molenaar, M., and Bryan F.: 1998, ‘Time variability of the Earth's gravity field: hydrological and oceanic effects and their possible detection using GRACE’, J. Geophys. Res. 103, 30,205-30,229.

    Article  ADS  Google Scholar 

  • Wunsch, C.: 1996, The Ocean Circulation Inverse Problem, 442 pp., Cambridge Univ. Press, New York.

    Google Scholar 

  • Wunsch, C. and Gaposchkin, E. M.: 1980, ‘On using satellite altimetry to determine the general circulation of the oceans with application to geoid improvement’, Revs. Geophys and Space Phys 18, 725-745.

    ADS  Google Scholar 

  • Wunsch, C. and Stammer, D.: 1998, ‘Satellite altimetry, the marine geoid and the oceanic general circulation’, Ann. Revs. Earth Plan. Scis. 26, 219-254.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wunsch, C., Stammer, D. III: OCEAN CIRCULATION: Global Ocean Data Assimilation and Geoid Measurements. Space Science Reviews 108, 147–162 (2003). https://doi.org/10.1023/A:1026298519493

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026298519493

Keywords

Navigation