Skip to main content
Log in

Dietary Energy Restriction in Breast Cancer Prevention

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

Dietary energy restriction (DER) inhibits the development of spontaneous, chemically, genetically, and virally induced mammary cancer in rats and/or mice. DER inhibits the initiation and postinitiation stages of mammary carcinogenesis and the development of both ovarian-hormone-dependent and -independent mammary carcinomas. The predominant effect of DER appears to be suppression of the clonal expansion of transformed cells, and this effect is most likely mediated via the coordinated regulation of cell proliferation, apoptosis, and angiogenesis. The effects of DER on cell cycle regulation and apoptosis are consistent with the limitation of one or more cell survival factors. Evidence is presented that the chemical mediators of this effect, glucocorticoids, insulin, and/or insulin-like growth factors, are elicited in response to the limitation in glucose availability imposed by DER. Investigation of DER is highly relevant to the misregulation of body weight which has been identified as a human health problem of global proportion. Mechanistic studies hold the promise of leading to the identification of DER mimetic approaches that can be used in the prevention and control of breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. Kritchevsky (1999). Caloric restriction and experimental carcinogenesis. Toxicol. Sci. 52:13-16.

    PubMed  Google Scholar 

  2. H. J. Thompson, Z. Zhu, and W. Jiang (2002). Protection against cancer by energy restriction: All experimental approaches are not equal. J. Nutr. 132:1047-1049.

    PubMed  Google Scholar 

  3. M. A. Lane, D. K. Ingram, and G. S. Roth (1999). Calorie restriction in nonhuman primates: Effects on diabetes and cardiovascular disease risk. Toxicol. Sci. 52:41-48.

    PubMed  Google Scholar 

  4. M. A. Lane, A. Black, A. Handy, E. M. Tilmont, D. K. Ingram, and G. S. Roth (2001). Caloric restriction in primates. Ann. N. Y. Acad. Sci. 928:287-295.

    PubMed  Google Scholar 

  5. H. J. Thompson, R. Strange, and P. J. Schedin (1992). Apoptosis in the genesis and prevention of cancer. Cancer Epidemiol. Biomarkers Prev. 1:597-602.

    PubMed  Google Scholar 

  6. P. W. Sylvester, C. F. Aylsworth, D. A. Van Vugt, and J. Meites (1982). Influence of underfeeding during the “critical period” or thereafter on carcinogen-induced mammary tumors in rats. Cancer Res. 42:4943-4947.

    PubMed  Google Scholar 

  7. P. W. Sylvester, C. F. Aysworth, and J. Meites (1981). Relationship of hormones to inhibition of mammary tumor development by underfeeding during the “critical period” after carcinogen administration. Cancer Res. 41:1384-1388.

    PubMed  Google Scholar 

  8. D. Kritchevsky, M. M. Weber, and D. M. Klurfeld (1984). Dietary fat versus caloric content in initiation and promotion of 7,12-dimethylbenz(a)anthracene-induced mammary tumorigenesis in rats. Cancer Res. 44:3174-3177.

    PubMed  Google Scholar 

  9. IARC (2002). Weight Control and Physical Activity. IARC Handbook of Cancer Prevention, IARC Press, Lyon.

    Google Scholar 

  10. Z. Zhu, A.D. Haegele, and H. J. Thompson (1997). Effect of caloric restriction on pre-malignant and malignant stages of mammary carcinogenesis. Carcinogenesis 18:1007-1012.

    PubMed  Google Scholar 

  11. S. D. Hursting, S. N. Perkins, J. M. Phang, and J. C. Barrett (2001). Diet and cancer prevention studies in p53-deficient mice. J. Nutr. 131:3092S-3094S.

    PubMed  Google Scholar 

  12. C. Ip (1990). Quantitative assessment of fat and calorie as risk factors in mammary carcinogenesis in an experimental model. Prog. Clin. Biol. Res. 346:107-117.

    PubMed  Google Scholar 

  13. D. M. Klurfeld, C. B. Welch, M. J. Davis, and D. Kritchevsky (1989). Determination of degree of energy restriction necessary to reduce DMBA-induced mammary tumorigenesis in rats during the promotion phase. J. Nutr. 119:286-291.

    PubMed  Google Scholar 

  14. Z. Zhu, W. Jiang, and H. J. Thompson (2002). An experimental paradigm for studying the cellular and molecular mechanisms of cancer inhibition by energy restriction. Mol. Carcinog. 35:51-56.

    PubMed  Google Scholar 

  15. Z. Zhu, W. Jiang, and H. J. Thompson (1999). Effect of energy restriction on tissue size regulation during chemically induced mammary carcinogenesis. Carcinogenesis 20:1721-1726.

    PubMed  Google Scholar 

  16. E. Lok, F. W. Scott, R. Mongeau, E. A. Nera, S. Malcolm, and D. B. Clayson (1990). Calorie restriction and cellular proliferation in various tissues of the female Swiss Webster mouse. Cancer Lett. 51:67-73.

    PubMed  Google Scholar 

  17. Z. Zhu, W. Jiang, and H. J. Thompson (1999). Effect of energy restriction on the expression of cyclin D1 and p27 during premalignant and malignant stages of chemically induced mammary carcinogenesis. Mol. Carcinog. 24:241-245.

    PubMed  Google Scholar 

  18. W. Jiang, Z. Zhu, and H. J. Thompson (2003). Effect of energy restriction on cell cycle machinery in 1-methyl-1-nitrosourea-induced mammary carcinomas in rats. Cancer Res. 63:1228-1234.

    PubMed  Google Scholar 

  19. H. J. Thompson, Z. Zhu, and W. Jiang, (2002). Identification of the apoptosis activation cascade induced by energy restriction. In the Proceedings of AACR 93rd Annual Meeting, Volume 43, p. 514, Abst. 2552, San Francisco, CA.

  20. J. N. McGinley, K. K. Knott, and H. J. Thompson (2002). Semi-automated method of quantifying vasculature of 1-methyl-1-nitrosourea-induced rat mammary carcinomas using immunohistochemical detection. J. Histochem. Cytochem. 50:213-222.

    PubMed  Google Scholar 

  21. H. J. Thompson, J. N. McGinley, K. K. Knott, N. S. Spoelstra, and P. Wolfe (2002). Vascular density profile of rat mammary carcinomas induced by 1-methyl-1-nitrosourea: Implications for the investigation of angiogenesis. Carcinogenesis 23:847-854.

    PubMed  Google Scholar 

  22. R. K. Boutwell, M. K. Brush, and H. P. Rusch (1949). The stimulating effect of dietary fat on carcinogenesis. Cancer Res. 9:741-746.

    PubMed  Google Scholar 

  23. Z. Zhu, W. Jiang, and H. J. Thompson (1998). Effect of corticosterone administration on mammary gland development and p27 expression and their relationship to the effects of energy restriction on mammary carcinogenesis. Carcinogenesis 19:2101-2106.

    PubMed  Google Scholar 

  24. W. Jiang, Z. Zhu, N. Bhatia, R. Agarwal, and H. J. Thompson (2002). Mechanisms of energy restriction: Effects of corticosterone on cell growth, cell cycle machinery, and apoptosis. Cancer Res. 62:5280-5287.

    PubMed  Google Scholar 

  25. L. L. Pashko, and A. G. Schwartz (1992). Reversal of food restriction-induced inhibition of mouse skin tumor promotion by adrenalectomy. Carcinogenesis 13:1925-1928.

    PubMed  Google Scholar 

  26. B. A. Ruggeri, D. M. Klurfeld, D. Kritchevsky, and R. W. Furlanetto (1989). Caloric restriction and 7,12-dimethylbenz(a)anthracene-induced mammary tumor growth in rats: Alterations in circulating insulin, insulin-like growth factors I and II, and epidermal growth factor. Cancer Res. 49:4130-4134.

    PubMed  Google Scholar 

  27. J. C. Heuson, and N. Legros (1972). Influence of insulin deprivation on growth of the 7, 12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats subjected to alloxan diabetes and food restriction. Cancer Res. 32:226-232.

    PubMed  Google Scholar 

  28. N. D. Cohen, and R. Hilf (1974). Influence of insulin on growth and metabolism of 7,12-dimethylbenz(alpha)anthracene-induced mammary tumors. Cancer Res. 34:3245-3252.

    PubMed  Google Scholar 

  29. R. Hilf, P. J. Hissin, and S. M. Shafie (1978). Regulatory interrelationships for insulin and estrogen action in mammary tumors. Cancer Res. 38:4076-4085.

    PubMed  Google Scholar 

  30. S. L. Gibson, and R. Hilf (1980). Regulation of estrogen-binding capacity by insulin in 7,12-dimethylbenz(a)anthracene-induced mammary tumors in rats. Cancer Res. 40:2343-2348.

    PubMed  Google Scholar 

  31. D. M. Klurfeld, L. M. Lloyd, C. B. Welch, M. J. Davis, O. L. Tulp, and D. Kritchevsky (1991). Reduction of enhanced mammary carcinogenesis in LA/N-cp (corpulent) rats by energy restriction. Proc. Soc. Exp. Biol. Med. 196:381-384.

    PubMed  Google Scholar 

  32. F. W. Kari, S. E. Dunn, J. E. French, and J. C. Barrett (1999). Roles for insulin-like growth factor-1 in mediating the anti-carcinogenic effects of caloric restriction. J. Nutr. Health Aging 3:92-101.

    PubMed  Google Scholar 

  33. N. H. Sarkar, and G. Fernandes, N. T. Telang, I. A. Kourides, and R. A. Good (1982). Low-calorie diet prevents the development of mammary tumors in C3H mice and reduces circulating prolactin level, murine mammary tumor virus expression, and proliferation of mamary alveolar cells. Proc. Natl. Acad. Sci. U.S.A. 79:7758-7762.

    PubMed  Google Scholar 

  34. D. K. Sinha, R. L. Gebhard, and J. E. Pazik (1988). Inhibition of mammary carcinogenesis in rats by dietary restriction. Cancer Lett. 40:133-141.

    PubMed  Google Scholar 

  35. G. S. Roth, M. A. Lane, D. K. Ingram, J. A. Mattison, D. Elahi, and J. D. Tobin, et al. (2002). Biomarkers of caloric restriction may predict longevity in humans. Science 297:811.

    PubMed  Google Scholar 

  36. O. Walberg (1930). The Metabolism of Tumors, Constable, London.

    Google Scholar 

  37. W. A. Weber, M. Schwaiger, and N. Avril (2000). Quantitative assessment of tumor metabolism using FDG-PET imaging. Nucl. Med. Biol. 27:683-687.

    PubMed  Google Scholar 

  38. R. L. Wahl, C. A. Henry, and S. P. Either (1992). Serum glucose: Effects on tumor and normal tissue accumulation of 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 183:643-647.

    PubMed  Google Scholar 

  39. R. L. Wahl (2001). Current status of PET in breast cancer imaging, staging, and therapy. Semin. Roentgenol. 36:250-260.

    PubMed  Google Scholar 

  40. C. V. Dang and G. L. Semenza (1999). Oncogenic alterations of metabolism. Trends Biochem. Sci. 24:68-72.

    PubMed  Google Scholar 

  41. M. W. Pariza and R. K. Boutwell (1987). Historical perspective: Calories and energy expenditure in carcinogenesis. Am. J. Clin. Nutr. 45:151-156.

    PubMed  Google Scholar 

  42. M. W. Pariza (1986). Calorie restriction, ad libitum feeding, and cancer. Proc. Soc. Exp. Biol. Med. 183:293-298.

    PubMed  Google Scholar 

  43. A. R. Tagliaferro, A. M. Ronan, L. D. Meeker, H. J. Thompson, A. L. Scott, and D. Sinha (1996). Cyclic food restriction alters substrate utilization and abolishes protection from mammary carcinogenesis female rats. J. Nutr. 126:1398-1405.

    PubMed  Google Scholar 

  44. S. R. Harris, A. E. Brix, J. R. Broderson, and O. R. Bunce (1995). Chronic energy restriction versus energy cycling and mammary tumor promotion. Proc. Soc. Exp. Biol. Med. 209:231-236.

    PubMed  Google Scholar 

  45. R. S. Mehta, S. R. Harris, C. A. Gunnett, O. R. Bunce, and D. K. Hartle (1993). The effects of patterned calorie-restricted diets on mammary tumor incidence and plasma endothelin levels in DMBA-treated rats. Carcinogenesis 14:1693-1696.

    PubMed  Google Scholar 

  46. M. P. Cleary, M. K. Jacobson, F. C. Phillips, S. C. Getzin, J. P. Grande, and N. J. Maihle (2002). Weight-cycling decreases incidence and increases latency of mammary tumors to a greater extent than does chronic caloric restriction in mouse mammary tumor virus-transforming growth factor-alpha female mice. Cancer Epidemiol. Biomarkers Prev. 11:836-843.

    PubMed  Google Scholar 

  47. C. A. Gillette, Z. Zhu, K. C. Westerlind, C. L. Melby, P. Wolfe, and H. J. Thompson (1997). Energy availability and mammary carcinogenesis: Effects of calorie restriction and exercise. Carcinogenesis 18:1183-1188.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henry J. Thompson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, H.J., Zhu, Z. & Jiang, W. Dietary Energy Restriction in Breast Cancer Prevention. J Mammary Gland Biol Neoplasia 8, 133–142 (2003). https://doi.org/10.1023/A:1025743607445

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025743607445

Navigation