Skip to main content
Log in

A surface characterisation and microstructural study by Scanning Electron Microscopy of the N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A microstructural characterisation of the family of N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts was carried out by observation of powder surface morphologies with the aim of extending the microstructure-property correlation. Inherent difficulties limiting extensive studies of organic solids by SEM, including volatility under vacuum, charging due to electron beam irradiation, and air-sensitivity were overcome with the use of a Field Emission SEM and cryostage attachment. This technique, providing considerable improvements in image quality at low accelerating voltages, enabled direct observation of complex microstructural features in samples exhibiting high temperature plastic crystalline phases (N,N-dimethylpyrrolidinium tetrafluoroborate [P11BF4]; N-methyl-N-ethylpyrrolidinium tetrafluoroborate [P12BF4]; N-methyl-N-propylpyrrolidinium tetrafluoroborate [P13BF4]). Extensive lattice imperfections including grain boundaries, slip planes and dislocation pits were observed within particles of approximately 200 μm diameter. The N-methyl-N-butylpyrrolidinium tetrafluoroborate (P14BF4) sample in this series revealed columnar single crystals with high aspect ratios. The origin of plastic flow properties is discussed using single crystal and polycrystalline slip observations and a relationship proposed between defect characteristics and transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. E. Blomgren, J. Power Sources 81/82 (1999) 112.

    Google Scholar 

  2. B. B. Owens, ibid. 90 (2000) 2.

    Google Scholar 

  3. T. Iwahori, I. Mitsuishi, S. Shiraga, N. Nakajima, H. Momose, Y. Ozaki, S. Taniguchi, H. Awata, T. Ono and K. Takeuchi, Electrochim. Acta 45 (2000) 1509.

    Google Scholar 

  4. S. Skaarup, K. West, B. Zachau-Christiansen, M. Popall, J. Kappel, J. Kron, G. Eichinger and G. Semrau, ibid. 43 (1998) 1589.

    Google Scholar 

  5. M. Balkanski, Solar Energy Mat. Solar Cells 62 (2000) 21.

    Google Scholar 

  6. M. Liu, S. Visco and L. D. Jongue, Electrochim. Acta. 38 (1993) 1289.

    Google Scholar 

  7. M. Voinov, in“Electrode Processes in Solid State Ionics,” edited by M. Kleitz and J. Dupuy (D. Reidel Publishing, Dordrecht, 1976) p. 431.

    Google Scholar 

  8. C. C. Liang, in“Proceedings of theNATOSponsored Advanced Study Institute on Fast Ion Transport in Solids,” edited by W.V. Gool (North-Holland Publishing, 1972) p. 19.

  9. C. A. Angell, Annual Techn. Report (U.S Dept. Energy, Washington, 1986), DOEER45102T1.

    Google Scholar 

  10. J. N. Sherwood, “The Plastically Crystalline State (Orientationally Disordered Crystals)” (John Wiley & Sons, 1979).

  11. Idem., in “The Plastically Crystalline State (Orientationally Disordered Crystals),” edited by J. N. Sherwood (John Wiley & Sons, 1979) p. 39.

  12. Idem., Mol. Cryst. Liq. Cryst. 9 (1969) 37.

  13. G. J. Ogilvie and P. M. Robinson, ibid. 12 (1971) 379.

    Google Scholar 

  14. P. M. Robinson and H. G. Scott, ibid. 11 (1970) 13.

    Google Scholar 

  15. B. S. Shah and J. N. Sherwood, Trans. Farad. Soc. 67 (1971) 1200.

    Google Scholar 

  16. W. D. Callister, “Materials Science and Engineering. An Introduction” (John Wiley & Sons, New York, 1991) p. 158.

    Google Scholar 

  17. A. Acharya, J. Mech. Phys. Solids 49 (2001) 761.

    Google Scholar 

  18. L. E. Popov, S. N. Kolupaeva, N. A Vihor and S. I. Puspesheva, Comput. Mater. Sci. 19 (2000) 267.

    Google Scholar 

  19. B. S. H. Royce, Disc. Farad. Soc. 38 (1964) 218.

    Google Scholar 

  20. L. M. Brown, Mater. Sci. Engin. A 285 (2000) 35.

    Google Scholar 

  21. J. L. Bassani, A. Needleman and E. Van Der Giessen, Int. J. Solid Struct. 38 (2001) 833.

    Google Scholar 

  22. J. F. Justo, V. Bulatov and S. Yip, Script. Mater. 36 (1997) 707.

    Google Scholar 

  23. H. Klapper, Mater. Chem. and Phys. 66 (2000) 101.

    Google Scholar 

  24. S. Amelinckx, Disc. Faraday Soc. 38 (1964) 7.

    Google Scholar 

  25. J. M. Thomas and J. O. Williams, Prog. Solid State Chem. 6 (1971) 119.

    Google Scholar 

  26. J. G. Aston, in “Physics and Chemistry of the Organic Solid State,” edited by D. Fox, M. Labes and A. Weissberger(Interscience, 1963) vol. 1, p. 543.

  27. P. J. Halfpenny, Condens. Matt. 1 (1991) 17.

    Google Scholar 

  28. J. Corish and P. W. M. Jacobs, Surf. Defect Prop. Solids 2 (1973) 160.

    Google Scholar 

  29. J. O. Williams and J. M. Thomas, Trans. Faraday Soc. 63 (1967) 1720.

    Google Scholar 

  30. N. Ostapenko, V. I. Sugakov and M. T. Shpak, “Spectroscopy of Defects in Organic Crystals” (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  31. W. Jones, J. M. Thomas, J. O. Williams, M. J. Gorringe and L. Hobbs, Mol. Cryst. Liq. Cryst. 32 (1976) 39.

    Google Scholar 

  32. H. Jaksch, Mater. World (1996) 323.

  33. C. Defarge, O. Malam Issa and J. Trichet, C.R. Acad. Sci. Paris: Earth and Planet. Sci. 328 (1999) 591.

    Google Scholar 

  34. P. Hovington, R. Gauvin and D. Drouin, Scanning 19 (1997) 438.

    Google Scholar 

  35. T. D. Allen, G. R. Bennion, S. A. Rutherford, S. Reipert, A. Ramahlo, E. Kiseleva and M. W. Goldberg, ibid. 19 (1997) 403.

    PubMed  Google Scholar 

  36. S. L. Erlandsen, ibid. 19 (1997) 323.

    Google Scholar 

  37. J. B. Pawley, in “Advances in Electronics and Electron Physics,” edited by P. W. Hawkes and B. Kazan (Academic Press, New York, 1992) p. 203.

    Google Scholar 

  38. S. Forsyth, J. Golding, D. R. Macfarlane and M. Forsyth, Electrochom. Acta 46 (2001) 1753.

    Google Scholar 

  39. J. Efthimiadis, S. J. Pas, M. Forsyth and D. R. Macfarlane, Solid State Ionics 154-155 (2002) 279.

    Google Scholar 

  40. J. Efthimiadis, M. Forsyth and D. R. Macfarlane, to be published.

  41. D. R Macfarlane, J. Huang and M. Forsyth, Nature 402 (1999) 792.

    Google Scholar 

  42. D. M. Paterson, J. Geol. Soc. (London) 152 (1995) 131.

    Google Scholar 

  43. C. E. Jeffree and N. D. Read, in “Electron Microscopy of Plant Cells,” edited by J. L. Hall and C. Hawes (Academic Press, 1991) p. 313.

  44. J. Timmermans, J. Phys. Chem. Solids 18 (1961) 1.

    Google Scholar 

  45. J. N. Sherwood, Mol. Cryst. Liq. Cryst. 9 (1969) 37.

    Google Scholar 

  46. W. D. Callister, “Materials Science and Engineering. An Introduction” (John Wiley & Sons, New York, 1991) p. 164.

    Google Scholar 

  47. T. Watanabe and K. Izumi, J. Cryst. Growth 46 (1979) 747.

    Google Scholar 

  48. K. Lucke and G. Gottstein, Acta Metall. 29 (1981) 779.

    Google Scholar 

  49. D. R. Macfarlane and M. Forsyth, Advan. Mater. 13 (2001) 957.

    Google Scholar 

  50. A. J. Hill, P. Meakin, J. Efthimiadis, M. Forsyth and D. R Macfarlane, to be published.

  51. T. Kobayashi, Y. Fujiyoshi and N. Uyeda, Acta Cryst. A 38 (1982) 356.

    Google Scholar 

  52. D. Wilmer, K. Funke, M. Witschas, R. Banhatti, M. Jansen, G. Korus, J. Fitter and R. Lechner, Physica B 266 (1999) 60.

    Google Scholar 

  53. M. Witschas, H. Eckert, D. Wilmer, R. Banhatti, K. Funke, J. Fitter, R. Lechner, G. Korus and M. Jansen, Zeit. Physik. Chem. 214 (2000) 643.

    Google Scholar 

  54. K. Horiuchi, H. Takayama, S. Ishimaru and R. Ikeda, Bull.Chem. Soc. Jpn. 73 (2000) 307.

    Google Scholar 

  55. H. Ishida, T. Iwachido and R. Ikeda, Ber. Bunsenges. Phys. Chem. 96 (1992) 1468.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efthimiadis, J., Forsyth, M. & MacFarlane, D.R. A surface characterisation and microstructural study by Scanning Electron Microscopy of the N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts. Journal of Materials Science 38, 3293–3301 (2003). https://doi.org/10.1023/A:1025142106139

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025142106139

Keywords

Navigation